Numerical simulation on a computer of the process of explosive forming

  • V. K. Borisevich
  • V. P. Sabel'kin
  • S. N. Solodyankin


Mathematical Modeling Mechanical Engineer Explosive Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. A. Shcheglov, “Dynamics of axisymmetrical forming of thin-walled shells,” in: Calculations of Plastic Flow Processes in Metals [in Russian], Nauka, Moscow (1973).Google Scholar
  2. 2.
    V. I. Bazaikin and V. N. Peretyat'ko, “Stress-deformed state of a circular membrane in dynamics,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1975).Google Scholar
  3. 3.
    R. Osias, “User's guide for analysis of finite elastoplastic deformation,” NASA, Cleveland, Ohio, 44135, Rep. E-7610(June, 1974).Google Scholar
  4. 4.
    E. Boyd, “Dynamic deformations of circular membranes,” J. Eng. Mech. Div., NEM3, (June, 1966), 1–16.Google Scholar
  5. 5.
    Moreno, W. Leech, and A. Witmer, “A more accurate method for the numerical calculation of nonstationary processes in elastoplastic thin shells for large deformations,” Prikl. Mekh., No. 2, 131–144 (1971).Google Scholar
  6. 6.
    W. Leech, A. Witmer, and H. Pina, “Numerical calculation technique for large elastic -plastic transient deformations of thin shells,” AIAA, No. 12, 2352–2359 (1968).Google Scholar
  7. 7.
    S. K. Godunov and V. S. Ryaben'kii, Introduction to the Theory of Difference Schemes [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  8. 8.
    W. Leech, Su, and Mack, “Stability of the method of finite differences for solving matrix equations,” Raketn. Tekh. Kosm., No. 11, 27 (1965).Google Scholar
  9. 9.
    N. Jones, “Finite deflection of a rigid-viscoplastic strain hardening annular plate loaded impulsively,” J. Appl. Mech.35, No. 4, 344–356 (1968).Google Scholar
  10. 10.
    A. Witmer, A. Balmer, W. Leech, and H. Plan, “Large dynamic deformation of beams, rings, plates, and shells,” AIAA J,1, No. 8, 1848–1856 (1963).Google Scholar
  11. 11.
    L. Mal'vern, “Propagation of longitudinal plastic waves taking the rate of deformation into account,” Mekhanika, Issue 1, No. 11 (1952).Google Scholar
  12. 12.
    Software for the ES Computer [in Russian], No. 4, List. Mat. Akad. Nauk BSSR, Minsk (1974).Google Scholar
  13. 13.
    E. I. Isachenkov, Forming of Rubber and Liquid [in Russian], Mashinostroenie, Moscow (1967).Google Scholar
  14. 14.
    V. D. Koshur, “Dynamic distortion of thin axisymmetrical shells under impulsive loading,” in: Dynamics of a Continuous Medium [in Russian], No. 29, Inst. Gidrodinam. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1977).Google Scholar
  15. 15.
    D. Himmelblau, Applied Nonlinear Programming [Russian translation], Mir, Moscow (1975).Google Scholar
  16. 16.
    J. Greenstadt, Math. Comput., No. 21, 360 (1967).Google Scholar
  17. 17.
    M. A. Anuchin, O. D. Antonenkov, et al., “The motion of a blank under free forming by explosion,” Izv. Vyssh. Uchev. Zaved., Mashinostr., No. 6, 155–161 (1963).Google Scholar
  18. 18.
    M. A. Faruqi, “Metal forming with underwater explosion bubbles located between rigid and free surfaces,” Int. J. Mach. Tool Des. Res.,16, No. 4, 319–324 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • V. K. Borisevich
    • 1
  • V. P. Sabel'kin
    • 1
  • S. N. Solodyankin
    • 1
  1. 1.Kharkov

Personalised recommendations