Structure of completely dispersed shock waves in relaxing mixtures

  • A. L. Ni
  • O. S. Ryzhov
Article
  • 19 Downloads

Keywords

Mathematical Modeling Shock Wave Mechanical Engineer Industrial Mathematic Disperse Shock Wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. L. Ni and O. S. Ryzhov, “The equations of transonic flows of relaxing mixtures,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1977).Google Scholar
  2. 2.
    L. G. Napolitano, “Generalized velocity potential equation for pluri-reacting mixtures,” Arch. Mech. Stosowanej,16, No. 2 (1964).Google Scholar
  3. 3.
    L. G. Napolitano, “Nonlinear nonequilibrium flows,” I. A. Rept. No. 142 (1969).Google Scholar
  4. 4.
    A. L. Ni and O. S. Ryzhov, “Sound velocities in multicomponent chemically active gas mixtures,” Vestn. Leningr. Univ. Mat. Mekh. Astron., No. 13, Issue 3 (1976).Google Scholar
  5. 5.
    E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves [in Russian], Nauka, Moscow (1965).Google Scholar
  6. 6.
    J. Clarke and M. McChesney, The Dynamics of Real Gases [Russian translation], Mir, Moscow (1967).Google Scholar
  7. 7.
    J. F. Clarke and J. B. Rodgers, “Shock waves in a gas with several relaxing internal energy modes,” J. Fluid Mech., 21, Part 4 (1965).Google Scholar
  8. 8.
    A. L. Ni, “The propagation of weak shock waves in media with an arbitrary number of chemical reactions,” Prikl. Mat. Mekh.,41, No. 6 (1977).Google Scholar
  9. 9.
    I. M. Gel'fand, Lectures on Linear Algebra [in Russian], Nauka, Moscow (1971).Google Scholar
  10. 10.
    A. L. Ni and O. S. Ryzhov, “Limiting expressions for the intermediate sound velocities in nonequilibrium flows with an arbitrary number of chemical reactions,” Prikl. Mat. Mekh.,41, No. 1 (1977).Google Scholar
  11. 11.
    G. I. Taylor, “The conditions necessary for discontinuous motion in gases,” Proc. R. Soc., Ser. A,84, No. 571 (1910).Google Scholar
  12. 12.
    O. S. Ryzhov, “The strictly transonic mode in flows of a reacting mixture,” in: Problems of Applied Mathematics and Mechanics [in Russian], Nauka, Moscow (1971).Google Scholar
  13. 13.
    M. Van Dyke, Perturbation Methods in Fluid Mechanics, Academic (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • A. L. Ni
    • 1
  • O. S. Ryzhov
    • 1
  1. 1.Moscow

Personalised recommendations