Nonisothermal motion of a gas in a channel with partial accomodation at the walls

  • I. P. Aleksandrychev
  • Yu. I. Markelov
  • B. T. Porodnov
  • V. D. Seleznev


Mathematical Modeling Mechanical Engineer Industrial Mathematic Nonisothermal Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    C. Cercignani, Theory and Application of the Boltzmann Equation, Elsevier (1976).Google Scholar
  2. 2.
    C. Cercignani and M. Lampis, “Kinetic models for gas-surface interactions,” Transp. Theory Stat. Phys.,1, No. 2, (1971).Google Scholar
  3. 3.
    E. M. Shakhov, Methods of Studying the Motion of a Rarefied Gas [in Russian], Nauka, Moscow (1974).Google Scholar
  4. 4.
    Yu. A. Koshmarov and Yu. A. Ryzhov, Applied Rarefied Gas Dynamics [in Russian], Mashinostroenie, Moscow (1977).Google Scholar
  5. 5.
    G. I. Marchuk, Computational Methods for Nuclear Reactors [in Russian], Gosatomizdat, Moscow (1961).Google Scholar
  6. 6.
    S. K. Loyalka, “Kinetic theory of thermal transpiration and the mechanocaloric effect,” J. Chem. Phys.,55, No. 9 (1971).Google Scholar
  7. 7.
    V. G. Chernyak, B. T. Porodnov, and P. E. Suetin, “Thermomolecular pressure difference for arbitrary accomodation of tangential momentum,” Inzh.-Fiz. Zh.,24, No. 2, (1973).Google Scholar
  8. 8.
    S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970).Google Scholar
  9. 9.
    V. G. Chernyak, A. E. Margilevskii, et al., “On the effect of the interaction of gases with a surface on thermal creep in a plane channel,” Inzh.-Fiz. Zh.,28, No. 4, (1975).Google Scholar
  10. 10.
    P. E. Suetin and V. G. Chernyak, “On the dependence of Poiseuille slip and thermal creep on the interaction of gas molecules with a boundary surface,” Izv. Akad. Nauk SSSR, Mekh. Zhid. Gaz, No. 6 (1977).Google Scholar
  11. 11.
    B. T. Porodnov, A. N. Kulev, and F. T. Tuchvetov, “Thermal transpiration in a circular capillary with a small temperature difference,” J. Fluid Mech.,88, Pt. 4 (1978).Google Scholar
  12. 12.
    V. D. Akin'shin, S. F. Borisov, et al., “Experimental study of the flow of rarefied gases in a capillary sieve at different temperatures,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1974).Google Scholar
  13. 13.
    T. S. Edmonds and J. P. Hobson, “A study of thermal transpiration using ultrahighvacuum techniques,” J. Vac. Sci. Tech.,2, No. 1 (1965).Google Scholar
  14. 14.
    P. E. Suetin, S. G. Skakun, and V. G. Chernyak, “Theory of the thermomolecular pressure difference for two statistical models,” Zh. Tekh. Fiz.,41, No. 8 (1971).Google Scholar
  15. 15.
    Yu. I. Markelov, B. T. Porodnov, et al., “Poiseuille flow and thermal creep for different scattering kernels describing the scattering of a gas by the surface of a channel,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6, (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • I. P. Aleksandrychev
    • 1
  • Yu. I. Markelov
    • 1
  • B. T. Porodnov
    • 1
  • V. D. Seleznev
    • 1
  1. 1.Sverdlovsk

Personalised recommendations