Advertisement

Application of the emanation method to the study of conversions of heteropoly compounds

  • Vikt I. Spitsyn
  • K. B. Zaborenko
  • M. A. Radicheva
  • A. M. Babeshkin
Inorganic and Analytical Chemistry
  • 24 Downloads

Summary

  1. 1.

    The emanation method was used to study the processes occurring during the heating of barium phosphotungstate.

     
  2. 2.

    The emanation of the salt at room temperature is higher, the higher its water content.

     
  3. 3.

    Regardless of the initial water content of the original hydrates, the changes occurring during heating above 60‡ are the same in character.

     
  4. 4.

    Over the temperature range from 100 to 200‡, where a large amount of water is lost, dehydration is not accompanied by a substantial change in emanation.

     
  5. 5.

    Practically complete dehydration (350‡) is not connected with the decomposition of the heteropolyanion, which is quite stable and begins to decompose at 580‡.

     
  6. 6.

    Barium phosphate and tungsten trioxide were found among the thermal decomposition products of barium phosphotungstate.

     

Keywords

Phosphate Hydrate Tungsten Barium Dehydration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. S. Kolovrat-Chervinskii, Work of the Radium Expedition of the Russian Academy of Sciences, No. 9 (1918); Le Radium4, 317 (1907);6, 321 (1909).Google Scholar
  2. 2.
    K. Zimmens, Z. phys. Chem. A.191, 1, 95 (1942); S. Flugge and K. Zimmens, Z. phys. Chem. B.42, 179 (1939).Google Scholar
  3. 3.
    K. Zimmens, Z. phys. Chem. B.37, 231 (1937);192, I (1943).Google Scholar
  4. 4.
    G. M. Zhabrova, M. D. Sinitsyna, and S. Z. Roginskii, Dokl. AN SSSR117, 255 (1957).Google Scholar
  5. 5.
    K. B. Zaborenko, A. M. Babeshkin, and V. A. Georgieva, Radiokhimiya, No. 3, 336 (1959).Google Scholar
  6. 6.
    M. Spenger, J. prakt. Chem.22, 428 (1880).Google Scholar
  7. 7.
    W. Gibbs, Proc. Amer. Acad.16, 122 (1881).Google Scholar
  8. 8.
    M. N. Sobolev, Zh. russk. fiz.-khim. obsh.28, 187 (1896).Google Scholar
  9. 9.
    A. Rosenheim, and J. Jaenicke, Z. anorgan. Chem.101, 854 (1907).Google Scholar
  10. 10.
    A. Ferrari, L. Cavalka, and M. Nardelli, Gazz. chem. ital.78, 551 (1948).Google Scholar
  11. 11.
    E. A. Nikitina and N. E. Kulakova, Z. neorgan. khimii4, 564 (1959).Google Scholar
  12. 12.
    G. Brauer, Textbook of Preparative Inorganic Chemistry [Russian translation], IL, 1956.Google Scholar
  13. 13.
    E. A. Nikitina, Z. obshch. khimii7, 889, 2609 (1937); E. A. Nikitina and O. N. Sokolova, Z. obshch. khimii23, 1437 (1953).Google Scholar
  14. 14.
    A. V. Rakovskii and E. A. Nikitina, Z. obshch. khimii1, 240 (1931).Google Scholar
  15. 15.
    A. M. Babeshkin, V. I. Baranov, and K. B. Zaborenko, Zavodsk. laboratoriya, No. 8, 996 (1958).Google Scholar
  16. 16.
    B. Sabortschev, Z. phys. Chem. A.176, 295 (1931).Google Scholar
  17. 17.
    E. Ya. Rode, Z. neorgan. khimii3, 2717 (1958).Google Scholar
  18. 18.
    A. A. Babad-Zakhryapin, Z. neorgan. khimii3, 2313 (1958).Google Scholar

Copyright information

© Consultants Bureau Enterprises, Inc. 1961

Authors and Affiliations

  • Vikt I. Spitsyn
    • 1
  • K. B. Zaborenko
    • 1
  • M. A. Radicheva
    • 1
  • A. M. Babeshkin
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations