Journal of Applied Mechanics and Technical Physics

, Volume 25, Issue 5, pp 707–711 | Cite as

Kinetics of spallation rupture in the aluminum alloy AMg6M

  • G. I. Kanel'
  • S. V. Razorenov
  • V. E. Fortov


Aluminum Mathematical Modeling Mechanical Engineer Aluminum Alloy Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. P. Borin, S. A. Novikov, et al., “Kinetics of rupture of metals in the submicrosecond lifetime range,” Dokl. Akad. Nauk SSSR,266, No. 6 (1982).Google Scholar
  2. 2.
    G. I. Kanel', “Resistance of metals to spallation rupture,” Fiz. Goreniya Vzryva, No. 3 (1982).Google Scholar
  3. 3.
    S. G. Sugak, G. I. Kanle', et al., “Numerical modeling of the effect of an explosion on an iron plate,” Fiz. Goreniya Vzryva, No. 2 (1983).Google Scholar
  4. 4.
    A. G. Ivanov and S. A. Novikov, “Capacitance sensor method for recording the instantaneous velocity of a moving surface,” Prib. Tekh. Eksp., No. 1 (1963).Google Scholar
  5. 5.
    T. N. Johnson and I. M. Barker, “Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum,” J. Appl. Phys.,40, No. 11 (1969).Google Scholar
  6. 6.
    S. A. Novikov, I. I. Divnov, and A. G. Ivanov, “Study of the rupture of steel, aluminum, and copper under explosive loading,” Fiz. Met. Metalloved.,21, No. 4 (1966).Google Scholar
  7. 7.
    G. V. Stepanov, “Spallation rupture of metals in two-dimensional elastoplastic loading waves,” Probl. Prochn., No. 8 (1976).Google Scholar
  8. 8.
    G. I. Kanel', “Work of spallation rupture,” Fiz. Goreniya Vzryva, No. 4 (1982).Google Scholar
  9. 9.
    G. I. Kanel' and L. G. Chernykh, “Process of spallation rupture,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1980).Google Scholar
  10. 10.
    B. A. Tarasov, “Rupture resistance of metals under shock loading,” Probl. Prochn., No. 3 (1974).Google Scholar
  11. 11.
    Yu. V. Bat'kov, S. A. Novikov, et al., “Effect of the temperature of a sample on the magnitude of the rupture stresses accompanying spallation in the AMG-6 aluminum alloy,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1979).Google Scholar
  12. 12.
    S. Cochran and D. Banner, “Spall studies in uranium,” J. Appl. Phys.,48, No. 7 (1977).Google Scholar
  13. 13.
    G. I. Kanel' and É. N. Petrova, “Strength of VT6 titanium under conditions of shock-wave loading,” in: Detonation [in Russian], Chernogolovka (1981).Google Scholar
  14. 14.
    L. Davison and A. L. Stevens, “Continuum measures of spall damage,” J. Appl. Phys.,43, No. 3 (1972).Google Scholar
  15. 15.
    A. A. Vorob'ev, A. N. Dremin, and G. I. Kanel', “Dependence of the coefficients of elasticity of aluminum on the degree of compression in a shock wave,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • G. I. Kanel'
    • 1
  • S. V. Razorenov
    • 1
  • V. E. Fortov
    • 1
  1. 1.Chernogolovka

Personalised recommendations