Averaged criterion of binder strength in fiber composites

  • A. G. Kolpakov
Article
  • 18 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Fiber Composite Binder Strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes In Periodic Media [in Russian], Nauka, Moscow (1984).Google Scholar
  2. 2.
    K. Chamis, “Micromechanical theories of strength,” in: Composite Materials. Vol. 5: Fracture and Fatigue [Russian translation], Mir, Moscow (1978).Google Scholar
  3. 3.
    J. O. Outwater, “The fundamental mechanics of reinforced plastics,” Am. Soc. Mach. Eng. Pap., No. 56-A-201 (1956).Google Scholar
  4. 4.
    J. M. Hedgepeth and P. Van Dyke, “Local stress concentrations In imperfect filamentary composite materials,” J. Compos. Mater.,1, No. 3 (1957).Google Scholar
  5. 5.
    C. Zweben, “On the strength of notched composites,” J. Mech. Phys. Solids,19, No. 3 (1971).Google Scholar
  6. 6.
    A. G. Demeshkin and A. G. Kolpakov, “Experimental check of the applicability of a shear model for the design of structures made of a unidirectional composite,” Din. Sploshnoi Sredy,55 (1982).Google Scholar
  7. 7.
    Yu. N. Rabotnov, Mechanics of Deformable Solids [in Russian], Nauka, Moscow (1979).Google Scholar
  8. 8.
    B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Moscow State Univ. (1984).Google Scholar
  9. 9.
    E. I. Grigolyuk and L. A. Fil'shtinskii, Perforated Plates and Shells [in Russian], Nauka, Moscow (1970).Google Scholar
  10. 10.
    J. L. Lyons, “Notes on certain computational aspects of the homogenization method in composite materials,” in: Computational Methods in Mathematics, Geophysics, and Optimum Control [Russian translation], Nauka, Novosibirsk (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. G. Kolpakov
    • 1
  1. 1.Novosibirsk

Personalised recommendations