Advertisement

Structural features of cleavage of nonsymmetrically substituted 1,3-dioxolanes by the Grignard reagent

  • B. A. Trofimov
  • A. S. Atavin
  • S. E. Orlova
  • E. I. Kositsina
  • V. V. Keiko
Organic and Biological Chemistry

Conclusions

  1. 1.

    The reaction between 4-methyl- and 2,4-dialkyl-1,3-dioxolanes and the Grignard reagent shows specific structural features, since only one of the possible hydroxyl ethers is formed.

     
  2. 2.

    IR spectroscopy and GLCH analysis were used to determine the structures of the hydroxy ethers; based on these findings, it was shown that the Grignard reagent splits the nonsymmetrically substituted dioxolanes under study at the O1-C2 bond.

     
  3. 3.

    The reaction is selective with respect to the spatial isomers of 2,4-dialkyl-1,3-dioxolanes (the cis-isomer reacts faster).

     
  4. 4.

    The reaction of 4-methyl-1,3-dioxolane with ethylmagnesium bromide was used as an example to show that insoluble solvates form at the first reaction stage; these consist mainly of a complex of cyclic acetal with magnesium bromide.

     
  5. 5.

    The findings agree with a mechanism involving cyclic migration of electrons in the six-membered ring formed by the complex “acetal-magnesium bromide” and magnesium diethyl.

     

Keywords

Magnesium Diethyl Dioxolanes Reaction Stage Grignard Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. F. Shostakovskii, A. S. Atavin, and B. A. Trofimov, Zh. obshch. khimii,34, 2088 (1964).Google Scholar
  2. 2.
    B. A. Trofimov, “Dissertation” [in Russian], Irkutsk (1965).Google Scholar
  3. 3.
    M. F. Shostakovskii, A. S. Atavin, S. E. Orlova, and B. A. Trofimov, Zh. organ. khimii,1, 1170 (1965).Google Scholar
  4. 4.
    A. S. Atavin, B. A. Trofimov, and S. E. Orlova, Zh. organ. khimii,2, 206 (1966).Google Scholar
  5. 5.
    M. F. Shostakovskii, A. S. Atavin, E. P. Vyalykh, B. A. Trofimov, N. A. Vodbol'skaya, and V. V. Keiko, Izv. AN SSSR, Ser. khim., 1283 (1966).Google Scholar
  6. 6.
    B. A. Trofimov, A. S. Atavin, and S. E. Orlova, Izv. AN SSSR, Ser. khim., 2023 (1966).Google Scholar
  7. 7.
    B. A. Trofimov, A. S. Atavin, and S. E. Orlova, Zh. organ. khimii, “in press” [in Russian].Google Scholar
  8. 8.
    P. J. Kruger and H. D. Mettee, J. Molec. Spectr.,18, 131 (1965).Google Scholar
  9. 9.
    A. Foster, A. Haines, and M. Stacey, Tetrahedron,16, 177 (1961).Google Scholar
  10. 10.
    L. P. Kuhn and B. A. Wires, J. Amer. Chem. Soc.,86, 2161 (1964).Google Scholar
  11. 11.
    M. Flett, Spectrochim. acta,10, 21 (1957).Google Scholar
  12. 12.
    M. I. Batuev and A. D. Matveeva, Izv. AN SSSR, Otd. khim. n., 448 (1951).Google Scholar
  13. 13.
    K. Nakanisi, “Infrared Spectra and the Structure of Organic Compounds” [in Russian], “Mir” (1965), p. 38.Google Scholar
  14. 14.
    H. H. Leiss and M. Tsutsui, J. Amer. Chem. Soc.,75, 897 (1953).Google Scholar
  15. 15.
    Habermehl Gerhard, Angew. Chemie,76, No. 6, 271 (1964).Google Scholar
  16. 16.
    L. I. Bellami, “Infrared Spectra of Complex Molecules,” [in Russian], IL (1958), p. 470.Google Scholar
  17. 17.
    N. Sheppard, Trans. Faraday Soc.,46 (7), 533 (1950).Google Scholar
  18. 18.
    P. Solomaa and A. Kankaanpeä, Acta chem. scand.,15, 871 (1961).Google Scholar
  19. 19.
    C. Blomberg, A. D. Vrengdenhil, and T. Homsma, Recueil. trav. chim.,82, 355 (1963).Google Scholar

Copyright information

© Consultants Bureau 1968

Authors and Affiliations

  • B. A. Trofimov
    • 1
  • A. S. Atavin
    • 1
  • S. E. Orlova
    • 1
  • E. I. Kositsina
    • 1
  • V. V. Keiko
    • 1
  1. 1.Siberian Division of the Academy of Sciences of the USSRIrkutsk Institute of Organic ChemistryUSSR

Personalised recommendations