Shock adiabatic curves of metals

New data, statistical analysis, and general laws
  • L. V. Al'tshuler
  • A. A. Bakanova
  • I. P. Dudoladov
  • E. A. Dynin
  • R. F. Trunin
  • B. S. Chekin
Article

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Adiabatic Curf Shock Adiabatic Curf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. V. Al'tshuler, “Use of shock waves in high-pressure physics,” Usp. Fiz. Nauk,85, No. 2 (1965).Google Scholar
  2. 2.
    Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Pressures [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  3. 3.
    P. Caldirola and H. Knoepfel (editors), Physics of High-Energy Density, Academic Press, New York (1971).Google Scholar
  4. 4.
    V. Zharkov and V. A. Kalinin, Equations of State of Solids at High Pressures and Temperatures [in Russian], Nauka, Moscow (1968).Google Scholar
  5. 5.
    H. K. Mao et al. “Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby fluorescence pressure gauge from 0.06 to 1 Mbar,” J. Appl. Phys.,49, No. 6 (1978).Google Scholar
  6. 6.
    Ragan et al., “Shock compression of molybdenum to 2.0 TPa by means of nuclear explosion,” J. Appl. Phys.,48, No. 7 (1977).Google Scholar
  7. 7.
    L. V. Al'tshuler and A. A. Bakanova, “Electronic structure and compressibility of metals at high pressures,” Usp. Fiz. Nauk,96, No. 2 (1968).Google Scholar
  8. 8.
    L. V. Al'tshuler, K. K. Krupnikov, and M. K. Brazhnik, “Dynamic compressibility of metals at pressures from 4000 to 4,000,000 atm,” Zh. Eksp. Tekh. Fiz.,34, No. 4 (1958).Google Scholar
  9. 9.
    L. V. Al'tshuler et al., “Dynamic compressibility and equation of state of iron at high pressures,” Zh. Eksp. Tekh. Fiz.,34, No. 4 (1958).Google Scholar
  10. 10.
    L. V. Al'tshuler et al., “Equations of state of aluminum, copper, and lead for the region of high pressures,” Zh. Eksp. Tekh. Fiz.,38, No. 3 (1960).Google Scholar
  11. 11.
    L. V. Al'tshuler, A. A. Bakanova, and R. F. Trunin, “Shock-wave adiabatic curves and zero isotherms of seven metals at high pressures,” Zh. Eksp. Tekh. Fiz.,42, No. 1 (1962).Google Scholar
  12. 12.
    K. K. Krupnikov et al., “Shock-wave compression of porous tungsten,” Zh. Eksp. Tekh. Fiz.,42, No. 3 (1962).Google Scholar
  13. 13.
    S. B. Kormer et al., “Dynamic compression of porous metals and equations of state with variable heat capacity at high temperatures,” Zh. Eksp. Tekh. Fiz.,42. No. 3 (1962).Google Scholar
  14. 14.
    K. K. Krupnikov et al., “Investigation of shock compressibility of titanium, molybdenum, tantalum, and iron,” Dokl. Akad. Nauk SSSR,148, No. 6 (1963).Google Scholar
  15. 15.
    A. A. Bakanova, I. P. Dudoladov, and R. F. Trunin, “Compression of alkali metals by strong shock waves,” Fiz. Tverd. Tela,7, No. 6 (1965).Google Scholar
  16. 16.
    L. V. Al'tshuler, A. A. Bakanova, and I. P. Dudoladov, “Characteristics of the shock compression of lanthanides,” Pis'ma Zh. Eksp. Tekh. Fiz.,3, No. 12 (1966).Google Scholar
  17. 17.
    A. A. Bakanova and I. P. Dudoladov, “Compression of alkaline-earth metals by strong shock waves,” Pis'ma Zh. Eksp. Tekh. Fiz.,5, No. 9 (1967).Google Scholar
  18. 18.
    A. A. Bakanova, I. P. Dudoladov, and Yu. N. Sutulov, “Electron transitions in hafnium, europium, and ytterbium at high pressures,” Fiz. Tverd. Tela,11, No. 7 (1969).Google Scholar
  19. 19.
    L. V. Al'tshuler A. A. Bakanova, and I. P. Dudoladov, “The effect of electron structure on the compressibility of metals at high pressures,” Zh. Eksp. Tekh. Fiz.,53, No. 6 (1967).Google Scholar
  20. 20.
    L. V. Al'tshuler and B. F. Chekin, “Metrology of pulsed pressures,” in: Reports of the First All-Union Symposium on Pulsed Pressures [in Russian], VNIIFTRI, Moscow (1974).Google Scholar
  21. 21.
    A. H. Jones et al., “Measurement of the very-high-pressure properties of materials using a light-gas gun,” J. Appl. Phys.,37, No. 9 (1966).Google Scholar
  22. 22.
    J. A. Morgan, “The equation of state of platinum to 680 GPa,” High Temp.-High Pres.,6, No. 2 (1974).Google Scholar
  23. 23.
    M. Van Thiel, Compendium of Shock-Wave Data, Vol. 1, UCRL 50108 (1977).Google Scholar
  24. 24.
    R. McQueen et al., in: High-Velocity Impact Phenomena, R. Kinslow (editor), Academic Press, New York-London (1970).Google Scholar
  25. 25.
    R. Duff et al., in: The Behavior of Dense Media under High Dynamic Pressure, Gordon and Breach, New York (1968).Google Scholar
  26. 26.
    W. Gust and H. Royce, “New electronic interaction in rare-earth metals at high pressure,” Phys. Rev.,B8, No. 8 (1973).Google Scholar
  27. 27.
    W. J. Carter et al., “Hugoniot equation of state of the lanthanides,” J. Phys. Chem. Solids,36, Nos. 7–8 (1975).Google Scholar
  28. 28.
    M. H. Rice, R. G. McQueen, and J. M. Walsh, in: Solid State Physics, F. Seitz and D. Turnbull (editors), Vol. 6, Academic Press, New York-London (1958).Google Scholar
  29. 29.
    R. G. McQueen and S. P. Marsh, “Equation of state for nineteen metallic elements,” J. Appl. Phys.,31, No. 7 (1960).Google Scholar
  30. 30.
    M. H. Rice, “Pressure-volume relations for the alkali metals from shock-wave measurements,” J. Phys. Chem. Solids,26, No. 3 (1965).Google Scholar
  31. 31.
    M. Van Thiel and A. S. Kusubov, Compendium of Shock Wave Data, Vol. 1, NBS, Springfield (1966).Google Scholar
  32. 32.
    J. S. Skidmore and E. Morris, Thermodynamics of Nuclear Materials, Vienna (1962).Google Scholar
  33. 33.
    D. P. Dandekar, “Loss of shear strength in poly crystalline tungsten under shock compression,” J. Appl. Phys.,47, No. 10 (1976).Google Scholar
  34. 34.
    A. N. Dremin and K. I. Kanel', “Compression and rarefaction waves in shock-compressed metals,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1976).Google Scholar
  35. 35.
    K. A. Gshneidner, in: Solid State Physics, F. Seitz and D. Turnbull (editors), Vol. 16, Academic Press, New York-London (1964).Google Scholar
  36. 36.
    S. N. Vaidya and G. C. Kennedy, “Compressibility of 18 metals to 45 kbar,” J. Phys. Chem. Solids,31, No. 10 (1970).Google Scholar
  37. 37.
    S. N. Vaidya and G. C. Kennedy, “The compression of the alkali metals to 45 kbar,” J. Phys. Chem. Solids,32, No. 11 (1971).Google Scholar
  38. 38.
    S. N. Vaidya and G. C. Kennedy, “Compressibility of 22 elemental solids to 45 kbar,” J. Phys. Chem. Solids,33, No. 7 (1972).Google Scholar
  39. 39.
    L. C. Ming and M. H. Manghnam, “Isothermal compression of bcc transition metals to 100 kbar,” J. Appl. Phys.,49, No. 1 (1978).Google Scholar
  40. 40.
    O. L. Anderson, in: Physical Acoustics, W. R. Mason (editor), Vol. 3B, Academic Press, New York-London (1965).Google Scholar
  41. 41.
    M. W. Guinan and D. J. Stenberg, “Pressure and temperature derivatives of the Isotropie polycrystalline shear modulus for 65 elements,” J. Phys. Chem. Solids,35, No. 11 (1974).Google Scholar
  42. 42.
    A. L. Ruoff, “Linear shock-velocity-particle-velocity relationships,” J. Appl. Phys.,38, No. 13 (1974).Google Scholar
  43. 43.
    D. J. Pastine and D. Piacesi, “The existence and implications of curvature in the relation between shock and particle velocity for metals,” J. Phys. Chem. Solids,27, No. 8 (1966).Google Scholar
  44. 44.
    B. Alder, in: Solids under Pressure, W. Paul and D. Warchaur (editors), McGraw-Hill, New York (1963).Google Scholar
  45. 45.
    A. I. Voropinov, G. M. Gandel'man and V. G. Podval'nyi, “Electron energy spectra and equations of state of solids at high pressures and temperatures,” Usp. Fiz. Nauk,100, No. 2 (1970).Google Scholar
  46. 46.
    L. V. Al'tshuler and B. S. Chekin, “Relaxation parameters of metals behind shock-wave fronts,” in: Detonation. Critical Phenomena. Physical and Technical Transformations in Shock Waves [in Russian], OIKhF, Chernogolovka (1978).Google Scholar
  47. 47.
    V. N. Tutubalin, Theory of Probability [in Russian], Nauka, Moscow (1972).Google Scholar
  48. 48.
    N. P. Klepikov and S. N. Sokolov, Analysis and Planning of Experiments by the Method of Maximum Probability [in Russian], Nauka, Moscow (1964).Google Scholar
  49. 49.
    D. J. Hudson, Statistics, Geneva (1964).Google Scholar
  50. 50.
    F. E. Prieto and C. Renero, “Equation of state of solids,” J. Phys. Chem. Solids,37, No. 1 (1976).Google Scholar
  51. 51.
    B. S. Chekin, “Dimensionless equations of state and attenuation of shock waves,” Zh. Prikl. Mekh. Tekh. Fiz. No. 2 (1978).Google Scholar
  52. 52.
    F. E. Prieto and C. Renero, “Equation of shock adiabat,” J. Appl. Phys.,41, No. 9 (1970).Google Scholar
  53. 53.
    R. Grover, “Comments on the comparison of dynamic and static compression data,” J. Phys. Chem. Solids,31, No. 10 (1970).Google Scholar
  54. 54.
    E. Yu. Tonkov, Phase Diagrams of Elements at High Pressure [in Russian], Nauka, Moscow (1979).Google Scholar
  55. 55.
    R. Grover and B. J. Alder, “Absence of first order electronic transitions in liquid metals,” J. Phys. Chem.,35, No. 7 (1974).Google Scholar
  56. 56.
    L. V. Al'tshuler et al., “Isentropic compressibility of aluminum, copper, lead, and iron at high pressures,” Zh. Eksp. Tekh. Fiz.,38, No. 4 (1960).Google Scholar
  57. 57.
    E. M. Savitskii et al., Alloys of Rare-Earth Metals [in Russian], Akad. Nauk SSSR, Moscow (1962).Google Scholar
  58. 58.
    J. W. McCaffrey, “Band structure and pressure-induced electronic transitions in calcium,” Sol. State Commun.,8, No. 24 (1970).Google Scholar
  59. 59.
    A. R. Kutsar and V.I. German, “Study of the structure of titanium after processing by shock waves,” in: Titanium. Metallurgy and Technology [in Russian], VILS, Moscow (1978).Google Scholar
  60. 60.
    G. E. Duvall and R. A. Gracham, “Phase transformation under shock-wave loading,” Rev. Mod. Phys.,49, No. 3 (1977).Google Scholar
  61. 61.
    T. Takanashi et al., “Isothermal compression of the alloys of iron up to 300 kbar at room temperature: iron-nickel alloys,” J. Geophys. Res.,73, No. 14 (1968).Google Scholar
  62. 62.
    P. M. Giles et al., “High-pressureαɛ martensite transformation in iron,” J. Appl. Phys.,42, No. 11 (1971).Google Scholar
  63. 63.
    L. M. Barcer, “α-Phase Hugoniot of iron,” J. Appl. Phys.,46, No. 6 (1975).Google Scholar
  64. 64.
    V. F. Anisichkin, “Generalized adiabatic curves of elements,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • L. V. Al'tshuler
    • 1
  • A. A. Bakanova
    • 1
  • I. P. Dudoladov
    • 1
  • E. A. Dynin
    • 1
  • R. F. Trunin
    • 1
  • B. S. Chekin
    • 1
  1. 1.Moscow

Personalised recommendations