Advertisement

Critical conditions for microdamage initiation in a spalling metal

  • V. K. Golubev
  • S. A. Novikov
  • Yu. S. Sobolev
  • N. A. Yukina
Article
  • 28 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Critical Condition Industrial Mathematic Microdamage Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. K. Golubev, S. A. Novikov, et al., “The effects of temperature on the critical spalling conditions for metals,” Zh. Prikl Mekh. Tekh, Fiz., No. 4 (1980).Google Scholar
  2. 2.
    L. Davison and R. A. Graham, “Shock compression of solids,” Phys. Rep.,55, No. 4 (1979).Google Scholar
  3. 3.
    Yu. V. Bat'kov and E. D. Vishnevetskii, “Apparatus for measuring pulsed pressures with piezoresistive transducers in the range 0.1–20 GPa,” in: Abstracts for the Second All-Union Symposium on Pulsed Pressures [in Russian], Izd. VNIIFTRI, Moscow (1976).Google Scholar
  4. 4.
    S. Cochran and D. Banner, “Spall studies in uranium,” J. Appl. Phys.,48, No. 7 (1977).Google Scholar
  5. 5.
    V. K. Golubev, S. A. Novikov, et al., “The spalling-failure mechanisms for St. 3 and 12Kh18N10T steels in the temperature range from 196 to 800°C,” Probl. Prochn., No. 5 (1981).Google Scholar
  6. 6.
    B. A. Tarasov, “The failure resistance in plates on shock loading,” Probl. Prochn., No. 3 (1974).Google Scholar
  7. 7.
    R. M. Schmidt, F. W. Davies, et al., “Temperature dependent spall threshold of four metal alloys,” J. Phys. Chem. Solids,39, No. 4 (1978).Google Scholar
  8. 8.
    J. H. Smith, “The low pressure spall threshold in copper,” in: Dynamic Behavior of Materials, ASTM, Philadelphia (1963).Google Scholar
  9. 9.
    A. L. Stevens and F. R. Tuler, “Effect of shock precompression on the dynamic fracture strength of 1020 steel and 6061-T6 aluminum,” J. Appl. Phys.,42, No. 13 (1971).Google Scholar
  10. 10.
    M. F. Ashby, C. Gandhi, and D. M. R. Taplin, “Fracture-mechanism maps and their construction for f.c.c. metals and alloys,” Acta Metall.,27, No. 3 (1979).Google Scholar
  11. 11.
    R. J. Fields, T. Weerasooriya, and M. F. Ashby, “Fracture mechanisms in pure iron, two austenitic steels, and one ferritic steel,” Met. Trans.,11A, No. 2 (1980).Google Scholar
  12. 12.
    D. J. Steinberg and R. W. Sharp, “Interpretation of shock-wave data for beryllium and uranium with an elastic-viscoplastic constitutive model,” J. Appl. Phys.,52, No. 8 (1981).Google Scholar
  13. 13.
    S. A. Novikov, I. I. Divnov, and A. G. Ivanov, “A study of the failure in steel, aluminum, and copper on explosive loading,” Fiz. Met. Metalloved.,21, No. 4 (1966).Google Scholar
  14. 14.
    G. I. Kanal' and V. V. Shcherban', “Plastic deformation and spalling in armco iron in shock waves,” Fiz. Goreniya Vzryva, No. 4 (1980).Google Scholar
  15. 15.
    C. S. Speight, P. F. Taylor, and A. A. Wallace, “Observations of spallation and attenuation effects in aluminium and beryllium from free-surface velocity measurements,” in: Metallurgical Effects at High Strain Rates, Plenum Press, New York-London (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. K. Golubev
    • 1
  • S. A. Novikov
    • 1
  • Yu. S. Sobolev
    • 1
  • N. A. Yukina
    • 1
  1. 1.Moscow

Personalised recommendations