Stability of ideal incompressible flow with constant vorticity in an elliptic cylinder

  • V. A. Vladimirov


Mathematical Modeling Mechanical Engineer Vorticity Industrial Mathematic Incompressible Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    C. C. Lin, Theory of Hydrodynamic Stability, Cambridge University Press (1955).Google Scholar
  2. 2.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford, Clarendon Press (1961).Google Scholar
  3. 3.
    L. N. Howard and A. S. Gupta, “On the hydrodynamic and hydromagnetic stability of swirling flows,” J. Fluid Mech.,14, No. 3 (1962).Google Scholar
  4. 4.
    Kh. Greenspan, Theory of Rotating Fluids [in Russian], Gidrometeoizdat, Leningrad (1975).Google Scholar
  5. 5.
    V. A. Vladimirov, “Stability of tornado type flow,” in: Dynamics of Continuous Media [in Russian], Vol. 37, Inst. Gidrodin., Sib. Otd., Akad. Nauk SSSR, Novosibirsk (1978).Google Scholar
  6. 6.
    V. A. Vladimirov, “Stability of ideal fluid flow with circular streamlines,” in: Dynamics of Continuous Media [in Russian], Vol. 42, Inst. Gidrodin., Sib. Otd., Akad. Nauk, SSSR, Novosibirsk (1979).Google Scholar
  7. 7.
    V. A. Vladimirov and V. F. Tarasov, “Compressibility of rotating flows,” Dokl. Akad. Nauk, SSSR,253, No. 3 (1980).Google Scholar
  8. 8.
    L. Prandtl, “Einfluss stabilisierender Kräfte auf die Turbulenz,” in: Ludwig Prandtl Gesammelte Abhandlungen, Teil 2, Springer-Verlag, Berlin (1961).Google Scholar
  9. 9.
    P. Bradshaw, “The analogy between streamline curvature and buoyancy in turbulent shear flow,” J. Fluid Mech.36, No. 1 (1969).Google Scholar
  10. 10.
    V. A. Vladimirov, B. A. Lugovtsov, and V. F. Tarasov, “Suppression of turbulence in flows with concentrated vortices,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1980).Google Scholar
  11. 11.
    Y. B. Zeldovich, “On the fraction of fluids between rotating cylinders,” Proc. Roy. Soc.,374, p. 299, London (1981, A).Google Scholar
  12. 12.
    V. V. Novozhilov, “Computation of turbulent flow between two rotating cylinders,” Dokl. Akad. Nauk SSSR,258, No. 6 (1981).Google Scholar
  13. 13.
    E. B. Gledzer, F. V. Dolzhanskii, et al., “Experimental and theoretical investigation of the stability of flow inside an elliptic cylinder,” Izv. Akad. Nauk SSSR, FAO,11, No. 10 (1975).Google Scholar
  14. 14.
    E. B. Gledzer, A. M. Obukhov, and V. M. Ponomarev, “On the stability of flow in elliptic containers,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 (1977).Google Scholar
  15. 15.
    Tsai Chon-Yin and S. E. Widnall, “The stability of short waves on a straight vortex filament in a weak externally imposed strain field,” J. Fluid Mech.,73, No. 4 (1976).Google Scholar
  16. 16.
    S. E. Widnall and Tsai Chon-Yin, “The instability of the thin vortex ring with constant vorticity,” Phil. Trans. Roy. Soc. London,287, No. 1344 (1977).Google Scholar
  17. 17.
    O. M. Phillips, Dynamics of the Upper Ocean, Cambridge University Press (1966).Google Scholar
  18. 18.
    K. Hasselman, “A criterion for nonlinear wave stability,” J. Fluid Mech.,30, No. 4 (1967).Google Scholar
  19. 19.
    S. L. Sobolev, “On a new problem in mathematical physics,” Izv. Akad. Nauk SSSR, Ser. Mat.18, No. 1 (1954).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. A. Vladimirov
    • 1
  1. 1.Novosibirsk

Personalised recommendations