Monatshefte für Chemie - Chemical Monthly

, Volume 109, Issue 4, pp 853–860 | Cite as

Biologically important compounds as ligands: Binary and ternary complexes of 5-amino-7-hydroxy-triazolo[4,5—d]pyrimidine (“8-azaguanine”) in solution

  • Ravindra K. Mittal
  • Madhup Chandra
  • Arun K. Dey
Anorganische, Struktur- und Physikalische Chemie


Metal complexation equilibria in the binary complexing systems of the typeM−L [M=Cu(II), Ni(II), Co(II), Zn(II), Cd(II), and UO2(VI);L=AZN=8-azaguanine] have been examined potentiometrically. The work has further been extended to investigating the ternary complexing systems of the typeM−A−L [A=2,2′-bipyridine, 1,10-phenanthroline or nitrilotriacetic acid]. Measurements were done at 25°C and at an ionic strength of 0.1M (NaClO4) in 50% (v/v) aqueous ethanol medium. Stabilities of the ternary complexes as compared to those of the corresponding binary complexes ofAZN are also discussed.


Ternary Complex Bipyridine Formation Constant Mixed Ligand Formation Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Biologisch relevante Verbindungen als Liganden: Binäre und ternäre Komplexe von 5-Amino-7-hydroxy-triazolo[4,5-d]pyrimidin (“8-Azaguanin”) in Lösung


Es wurden Komplexierungsgleichgewichte vom binären TypM−L [M=Cu(II), Ni(II), Co(II), Zn(II), Cd(II) und UO2(VI);L=AZN=8-Azaguanin] potentiometrisch untersucht. Die Untersuchungen wurden auf ternäre Systeme vom TypM−A−L ausgedehnt [A=2,2′-Bipyridin, 1,10-Phenanthrolin oder Nitrilotriessigsäure]. Die Messungen wurden bei 25°C bei Ionenstärken von 0,1M (NaClO4) in 50% wäßr. Ethanol durchgeführt. Die Stabilität der ternären Komplexe im Vergleich zu den entsprechenden binären wird diskutiert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. N. Davidson, The Biochemistry of Nucleic Acids, p. 220. London: Methuen. 1963.Google Scholar
  2. 2.
    R. E. F. Mathews, Nature171, 1065 (1953).CrossRefGoogle Scholar
  3. 3.
    R. J. Hilmol andL. A. Heppel, J. Amer. Chem. Soc.79, 4810 (1957).CrossRefGoogle Scholar
  4. 4.
    G. K. R. Makar andD. R. Williams, J. Inorg. Nucl. Chem.36, 1675 (1974).CrossRefGoogle Scholar
  5. 5.
    R. Nayan andA. K. Dey, J. Indian Chem. Soc.54, 759 (1977).Google Scholar
  6. 6.
    G. R. Gale, J. A. Howle, andE. M. Walker, jr., Cancer Res.31, 950 (1971).Google Scholar
  7. 7.
    R. O. Williams andL. A. Loebb, J. Cell. Biol.58, 594 (1973).CrossRefGoogle Scholar
  8. 8.
    G. A. Nolan, Toxicol. Appl. Pharmacol.23, 222 and 238 (1972).CrossRefGoogle Scholar
  9. 9.
    H. Irving andH. S. Rossotti, J. Chem. Soc. 3397 (1953); 2904 (1954).Google Scholar
  10. 10.
    M. V. Chidambaram andP. K. Bhattacharya, J. Inorg. Nucl. Chem.32, 3271 (1970); Indian J. Chem.9, 1294 (1971).CrossRefGoogle Scholar
  11. 11.
    R. Nayan andA. K. Dey, Z. Naturforsch.27 b, 688 (1972).Google Scholar
  12. 12.
    D. G. Vartak andK. R. Menon, J. Inorg. Nucl. Chem.33, 1003 (1971).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Ravindra K. Mittal
    • 1
  • Madhup Chandra
    • 1
  • Arun K. Dey
    • 1
  1. 1.Chemical LaboratoriesUniversity of AllahabadAllahabadIndia

Personalised recommendations