The phase composition of carbonized aluminum hydroxide

  • Ya. R. Katsobashvili
  • N. S. Kurkova
  • M. M. Getsiu
Physical Chemistry


  1. 1.

    In the carbonization of aluminate solutions under conditions of pH 10–11.5 and 25–40°C, amorphous aluminum hydroxide precipitates.

  2. 2.

    The gelatinous precipitates, which are products of aging of the amorphous aluminum hydroxide during the process of washing, are not any definite crystalline modification of aluminum hydroxide, but occupy an intermediate position between the amorphous and crystalline states. The molecules of aluminum hydroxide form a more or less ordered steric structure, including elements of boehmite and bayerite structures.



Aluminum Hydroxide Phase Composition Aluminum Hydroxide Crystalline State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Ya. R. Katsobashvili, N. S. Kurkova, and É. A. Levitskii, in: Production of Catalysts in the Oil Refining Industry [in Russian], TsNIITÉneftegaz, Moscow (1963), p. 106.Google Scholar
  2. 2.
    Ya. R. Katsobashvili and G. M. Mikheev, Neftepererabotka i Neftekhimiya, No. 8, 8 (1965).Google Scholar
  3. 3.
    A. N. Basov, B. N. Davydov, Ya. R. Katsobashvili, N. S. Kurkova, and É. A. Levitskii, Khimiya i Tekhnologiya Topliv i Masel, No. 6, 41 (1965).Google Scholar
  4. 4.
    Ya. R. Katsobashvili, N. S. Kurkova, and F. M. Unmut, Khimiya i Tekhnologiya Topliv i Masel, No.4, 20 (1965).Google Scholar
  5. 5.
    O. Clemser and G. Rieck, Naturwissenschaften,44, No. 5, 180 (1957).Google Scholar
  6. 6.
    V. B. Tatarskii, Crystallooptics and the Immersion Method [in Russian], Nedra (1965).Google Scholar
  7. 7.
    N. S. Shmorgunenko and É. L. Levitskii, Izv. AN BSSR, No. 2, 43 (1966).Google Scholar
  8. 8.
    A. A. Chistyakova, Dissertation [in Russian], Leningrad (1964).Google Scholar
  9. 9.
    H. Ginsberg, W. Hüttig, and H. Stiehl, Z. Anorgan und Allgem. Chem.,309, No. 5, 233 (1961).Google Scholar
  10. 10.
    J. H. de Boer, J. M. H. Fortuin, and J. J. Steggerda, Koninklijke Nederlandse Akad. Van Wetenschappen Proceedings,57, No. 2, 170 (1954).Google Scholar
  11. 11.
    E. Calvet, P. Boivinet, M. Noel, H. Thibon, A. Maillard, and R. Tertian, Bull. Soc. Chim. France, 99 (1953).Google Scholar
  12. 12.
    O. I. Arakelyan and A. A. Chistyakova, Zh. Prikl. Khim.,35, 1653 (1962).Google Scholar
  13. 13.
    V. A. Kolesova and Ya. I. Ryskin, Zh. Strukt. Khim.,3, 680 (1962).Google Scholar
  14. 14.
    V. A. Kolesova and Ya. I. Ryskin, Optika i Spektroskopiya,7, 261 (1959).Google Scholar
  15. 15.
    V. R. Dzis'ko, T. S. Vinnikova, L. M. Kefeli, and I. A. Ryzhak, Kinetika i Kataliz,7, 859 (1966).Google Scholar
  16. 16.
    L. E. Oomes, J. H. Boer, and B. C. Lippens, Proc. of the 4th Intern. Sympos. on the Reactivity of Solids, Amsterdam (1961), p. 317.Google Scholar
  17. 17.
    M. N. Smirnov, Zh. Prikl. Khim.,32, 1192 (1959).Google Scholar

Copyright information

© Consultants Bureau 1969

Authors and Affiliations

  • Ya. R. Katsobashvili
    • 1
  • N. S. Kurkova
    • 1
  • M. M. Getsiu
    • 1
  1. 1.A. V. Topchiev Institute of Petrochemical SynthesisAcademy of Sciences of the USSRUSSR

Personalised recommendations