Monatshefte für Chemie / Chemical Monthly

, Volume 107, Issue 3, pp 845–857 | Cite as

Die Rolle der Wasserstoffbrückenbindung bei der ionenassoziation von Ammoniumsalzen

  • Ulrich Mayer
  • Viktor Gutmann
  • Kurt Kösters
Anorganische, Struktur- und Physikalische Chemie

The role of hydrogen bonding in ion association of ammonium salts


The dissociation constants of quinuclidinium chloride have been determined in dimethylsulfoxide (DMSO), dimethylacetamide (DMA), dimethylformamide (DMF), propanediol-1,2-carbonate (PDC), acetonitrile (AN), nitromethane (NM) and nitrobenzene (NB). The data suggest that the H-atom bonded to the N-atom is sufficiently acidic in order to form H-bridges either with the chloride ion or with solvent molecules. In contrast to the failure of elementary electrostatic models the results have been successfully interpreted by the coordination chemical approach which takes into account the different nucleophilic and electrophilic properties of the solvents.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Gutmann, Chemische Funktionslehre. Wien-New York: Springer. 1971.Google Scholar
  2. 2.
    U. Mayer undV. Gutmann, Structure and Bonding12, 113 (1972);V. Gutmann, Coord. Chem. Rev.18, 225 (1976).Google Scholar
  3. 3.
    M. Linhard, Z. Elektrochem.50, 224 (1944);I. L. Jenkins undC. B. Monk, J. Chem. Soc.1951, 68;E. W. Davies undC. B. Monk, J. Amer. Chem. Soc.80, 5032 (1958);F. A. Posey undH. Taube, J. Amer. Chem. Soc.78, 15 (1956);I. R. Lantzke undD. W. Watts, Austral. J. Chem.19, 969 (1966);N. Tanaka, K. Ogino undG. Sato, Bull. Chem. Soc. Japan39, 366 (1966);W. A. Millen undD. W. Watts, J. Amer. Chem. Soc.89, 6858 (1967).Google Scholar
  4. 4.
    U. Mayer, Pure Appl. Chem.41, 291 (1975).Google Scholar
  5. 5.
    H. S. Harned undB. B. Owen, Physical Chemistry of Electrolytic Solutions. New York: Reinhold. 1958.Google Scholar
  6. 6.
    R. M. Fuoss undL. Onsager, J. Physic. Chem.61, 668 (1957).Google Scholar
  7. 7.
    K. Kösters, Diplomarbeit, Technische Universität Wien, 1975.Google Scholar
  8. 8.
    D. E. Arrington undE. Griswold, J. Physic. Chem.74, 123 (1970).Google Scholar
  9. 9.
    G. R. Lester, T. A. Gover undP. G. Sears, J. Physic. Chem.60, 1076 (1956).Google Scholar
  10. 10.
    P. G. Sears, E. D. Wilhoit undL. R. Dawson, J. Physic. Chem.59, 373 (1955).Google Scholar
  11. 11.
    L. M. Mukherjee, D. P. Boden undR. Lindauer, J. Physic. Chem.74, 1942 (1970).Google Scholar
  12. 12.
    D. F. Evans, C. Zawoyski undR. L. Kay, J. Physic. Chem.69, 3878 (1965);G. Kortüm, S. D. Gokhale undH. Wilski, Z. Phys. Chem. [Frankfurt]4, 286 (1955).Google Scholar
  13. 13.
    A. K. R. Unni, L. Elias undH. I. Schiff, J. Physic. Chem.67, 1216 (1963);R. L. Kay, S. C. Blum undH. I. Schiff, J. Physic. Chem.67, 1223 (1963).Google Scholar
  14. 14.
    V. Gutmann undE. Wychera, Inorg. Nucl. Chem. Letters2, 257 (1966);V. Gutmann, Coordination Chemistry in Non-Aqueous Solutions. Wien-New York: Springer. 1968.Google Scholar
  15. 15.
    U. Mayer, V. Gutmann undW. Gerger, Mh. Chem.106, 1235 (1975).Google Scholar
  16. 16.
    R. M. Fuoss, J. Amer. Chem. Soc.80, 5059 (1958).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Ulrich Mayer
    • 1
  • Viktor Gutmann
    • 1
  • Kurt Kösters
    • 1
  1. 1.Institut für Anorganische ChemieTechnische Universität WienWienÖsterreich

Personalised recommendations