Monatshefte für Chemie - Chemical Monthly

, Volume 109, Issue 6, pp 1321–1328 | Cite as

Aquotisierung descis-di-isothiocyanato-bis-äthylendiaminchrom(III)-Ions in sauren Lösungen Kinetik und Mechanismus der Substitutionsreaktionen von Komplexverbindungen, 53. Mitt.

  • Csaba Várhelyi
  • János Zsakó
  • Béla Gagyi
Anorganische, Struktur- und Physikalische Chemie

Aquation of the cis-di-isothiocyanato-bis-ethylenediamine-chromium(III)-ions in acidic solutions Kinetics and mechanism of substitution reactions of complexes, LIII


The aquation rate ofcis-[Cr(en)2(NCS)2]NO3 has been studied at different temperatures and HClO4 concentrations. The protolytic pre-equilibrium (1) as well as the parallel aquation reactions (2) and (3) have been assumed. Activation enthalpy and entropy values have been derived from experimental data for both aquation reactions. By presupposing a dissociation mechanism, the activation parameters obtained as well as those of the aquation of thetrans isomer, are discussed in terms of the electronic structure. Equilibrium constants of reaction (1) are compared to those of the analogous Co(III) complexes and are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. W. Fee, C. S. Garner undV. Barowfield, J. inorg. Chem.6, 870 (1967).CrossRefGoogle Scholar
  2. 2.
    V. Holba, Chem. Zvesti19, 54 (1965).Google Scholar
  3. 3.
    V. Holba, Chem. Zvesti18, 561 (1964).Google Scholar
  4. 4.
    J. M. Weigel undC. S. Garner, J. inorg. Chem.4, 1569 (1965).CrossRefGoogle Scholar
  5. 5.
    D. M. Tully-Smith, A. K. Juriomoto, D. A. House undC. S. Garner, J. inorg. Chem.6, 1524 (1967).CrossRefGoogle Scholar
  6. 6.
    Cs. Várhelyi, J. Zsakó undG. Simó, Stud. Univ. Babeş-Bolyai, Chem.18, 123 (1973).Google Scholar
  7. 7.
    R. G. Pearson, R. A. Munson undF. Basolo, J. Amer. Chem. Soc.80, 504 (1958).CrossRefGoogle Scholar
  8. 8.
    J. Zsakó, Cs. Várhelyi undD. Dobocan, J. inorg. nucl. Chem.31, 1459 (1969).CrossRefGoogle Scholar
  9. 9.
    Cs. Várhelyi undJ. Zsakó, Rev. roum. chim.16, 1185 (1971).Google Scholar
  10. 10.
    J. Zsakó, Cs. Várhelyi undS. Bleoca, Acta chim. Acad. Sci. Hung.70, 175 (1971).Google Scholar
  11. 11.
    K. Fajans, Naturwiss.11, 165 (1923).CrossRefGoogle Scholar
  12. 12.
    R. Tsuchida, Bull. chem. Soc. Japan13, 388, 436 (1938).CrossRefGoogle Scholar
  13. 13.
    J. Zsakó, J. Sata undCs. Várhelyi, Acta chim. Acad. Sci. Hung.78, 387 (1973).Google Scholar
  14. 14.
    Z. Finta, Cs. Várhelyi undJ. Zsakó, J. inorg. nucl. Chem.32, 3013 (1970).CrossRefGoogle Scholar
  15. 15.
    Cs. Várhelyi, J. Zsakó undZ. Finta, Mh. Chem.101, 1013 (1970).Google Scholar
  16. 16.
    J. Zsakó, Cs. Várhelyi, I. Gănescu undL. Zöldi, Mh. Chem.99, 2235 (1968).Google Scholar
  17. 17.
    J. Zsakó, Cs. Várhelyi, I. Gănescu undJ. Turós, Acta chim. Acad. Sci. Hung.61, 167 (1969).Google Scholar
  18. 18.
    J. Zsakó, I. Gănescu, Cs. Várhelyi undAl. Popescu, Z. anorg. Chem.380, 216 (1971).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Csaba Várhelyi
    • 1
  • János Zsakó
    • 1
  • Béla Gagyi
    • 1
  1. 1.Chemische Fakultät“Babeş-Bolyai”-UniversitätCluj-NapocaRumänien

Personalised recommendations