Advertisement

Pore expansion in plastic metals under spall

  • V. K. Golubev
Article
  • 16 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Plastic Metal Pore Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    T. W. Barbee, L. Seaman, et al., “Dynamic fracture criteria for ductile and brittle metals,” J. Mater.,7, No. 3 (1972).Google Scholar
  2. 2.
    F. A. McClintock, “Models of spall fracture by hole growth,” Metallurgical Effects at High Strain Rates. Plenum Press, New York-London (1973).Google Scholar
  3. 3.
    A. L. Stevens, L. Davison, and E. W. Warren, “Spall fracture in aluminum single crystals: a dislocation-dynamics approach,” J. Appl. Phys.,43, No. 12 (1972).Google Scholar
  4. 4.
    J. N. Johnson, “Dynamic fracture and spallation in ductile solids,” J. Appl. Phys.,52, No. 4 (1981).Google Scholar
  5. 5.
    V. K. Golubev, S. A. Novikov, et al., “Influence of temperature on the critical conditions for spall rupture of metals,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1980).Google Scholar
  6. 6.
    V. K. Golubev, S. A. Novikov, et al., “On the mechanisms of spall rupture of steel St. 3 and 12Kh18N10T in the-196...800°C temperature range,” Probl. Prochn., No. 5 (1981).Google Scholar
  7. 7.
    V. G. Grigor'ev, S. Z. Dunin, and V. V. Surkov, “Collapse of a spherical pore in a viscoplastic material,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1 (1981).Google Scholar
  8. 8.
    L. Seaman, D. S. Curran, and D. A. Shockey, “Computational models for ductile and brittle fracture,” J. Appl. Phys.,47, No. 11 (1976).Google Scholar
  9. 9.
    V. S. Ivanova, Metal Rupture [in Russian], Metallurgiya, Moscow (1979).Google Scholar
  10. 10.
    L. E. Murr, “Work hardening and the pressure dependence of dislocation density arrangements in shock-loaded nickel and copper,” Scripta Metall.,12, No. 2 (1978).Google Scholar
  11. 11.
    L. Davison and R. A. Graham, “Shock compression of solids, Phys. Reports,55, No. 4 (1979).Google Scholar
  12. 12.
    B. M. Butcher, M. M. Carroll, and A. C. Holt, “Shock-wave compaction of porous aluminum,” J. Appl. Phys.,45, No. 9 (1974).Google Scholar
  13. 13.
    L. C. Chhabildas and J. R. Asay, “Rise-time measurements of shock transitions in aluminum, copper, and steel,” J. Appl. Phys.,50, No. 4 (1979).Google Scholar
  14. 14.
    V. I. Al'shits and V. L. Indenbom, “Dynamic retardation of dislocations,” Usp. Fiz. Nauk,115, No. 1 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. K. Golubev
    • 1
  1. 1.Moscow

Personalised recommendations