General Relativity and Gravitation

, Volume 21, Issue 5, pp 447–455 | Cite as

Stability of noncircular and infinite motions of test bodies in general relativity

  • Alexander A. Bakhan'kov
  • Anton P. Ryabushko
Research Articles


The stability of finite noncircular and infinite motions of nonspinning and spinning test bodies in the Schwarzschild field has been investigated. It is shown that these motions are unstable by Lyapunov relative to variables\(r,\dot r,\theta ,\dot \theta \). The conditions of the stability in a finite interval of time for these motions have been found. The time interval of the motion stability has been numerically estimated.


General Relativity Differential Geometry Finite Interval Motion Stability Test Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kaplan, S. A. (1949).JETP (USSR),19, 951.Google Scholar
  2. 2.
    Pyragas, K. A. (1969). On the motion stability in general relativity, Ph.D. dissertation, Kazan' State University.Google Scholar
  3. 3.
    Armenti, A. (1975).Nuovo Cimento,25B, 442.Google Scholar
  4. 4.
    Dadhich, N., and Kale, P. P. (1977).J. Math. Phys.,18, 1727.Google Scholar
  5. 5.
    Howes, R. J. (1979).Austral. J. Phys.,32, 293.Google Scholar
  6. 6.
    Ryabushko, A. P. (1987). The problem of the bodies motion stability in general relativity (Higher School, Minsk).Google Scholar
  7. 7.
    Ryabushko, A. P., and Bakhan'kov, A. A. (1987).Gen. Rel. Grav.,19, 351.Google Scholar
  8. 8.
    Hansen, R. O. (1971).Astrophys. J.,170, 557.Google Scholar
  9. 9.
    Kurmakaev, Z. H. (1973). In Conference proceedings: “The dynamics of galaxies and galaxies collections” (Alma-Ata), pp. 238–241.Google Scholar
  10. 10.
    Bondarev, B. V. (1976). InGravitation and Theory of Relativity (Kazan'),10–11, pp. 27–36.Google Scholar
  11. 11.
    Kostyukovich, N. N. (1982). In “Proceedings of the third republican symposium on differential and integral equations,” Odessa, pp. 130–131.Google Scholar
  12. 12.
    Bakhan'kov, A. A. (1981). The stability of the motion of spinning bodies in general relativity. Ph.D. dissertation, Byelorussian State University.Google Scholar
  13. 13.
    Lebedev, A. A. (1954).Appl. Mech. Math. (USSR),18, 139.Google Scholar
  14. 14.
    Kamenkov, G. N. (1972).The Selected Works, Vol. 2 (Nauka, Moscow).Google Scholar
  15. 15.
    Bakhan'kov, A. A., and Ryabushko, A. P. (1986). In “Abstracts of contributed papers of 11th international conference on general relativity and gravitation,” Stockholm, p. 636.Google Scholar
  16. 16.
    Papapetrou, A. (1951).Proc. R. Soc. Lond.,209A, 248.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Alexander A. Bakhan'kov
    • 1
  • Anton P. Ryabushko
    • 2
  1. 1.Department of RadiophysicsByelorussian State UniversityMinskU.S.S.R.
  2. 2.Chair of Higher MathematicsByelorussian Institute for Mechanization of AgricultureMinskU.S.S.R.

Personalised recommendations