Advertisement

Change in the reactivity and spectral characteristics from phosphoryl to thionephosphoryl compounds

  • A. A. Neimysheva
  • V. I. Savchik
  • M. V. Ermolaeva
  • I. L. Knunyants
Physical Chemistry

Conclusions

  1. 1.

    It was demonstrated experimentally that, in contrast to the existing premise, the replacement of oxygen in phosphorus derivatives by sulfur, both in the alkoxyl and in the phosphoryl groups, leads to an increase in the deficit of electron density on the phosphorus atom of the molecules in the ground state. The decrease in the reactivity in reactions of nucleophilic substitution of thionephosphoryl compounds is due chiefly to different polarizabilities of P=O and P=S compounds, the influence of solvation, steric and other factors.

     
  2. 2.

    The conjugation of the substituents with the 3d-orbitals of the phosphorus atom, manifested statically and reflected in the spectral characteristics of organophosphorus compounds, is weakened in the case of nucleophilic attack, and in the transition state the electron density on the phosphorus atom is determined to a great degree by the inductive influence of the substituents.

     

Keywords

Oxygen Sulfur Phosphorus Transition State Spectral Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. A. Neimysheva, V. I. Savchuk, and I. L. Knunyants, Zh. Obshch. Khim.,37, 1822 (1967).Google Scholar
  2. 2.
    A. A. Neimysheva, V. I. Savchuk, and I. L. Knunyants, Zh. Obshch. Khim.,36, 500 (1966).Google Scholar
  3. 3.
    J. A. A. Ketelaar, Recueil Trav. Chim.,69, 649 (1950);71, 1253 (1952); R. L. Metcalf and R. B. March, Science,117, 527 (1953); L. Ginjaar and S. Vel, Recueil Trav. Chim.,77, 958 (1958); V. A. Yakovlev, Chemistry and Use of Organophosphorus Compounds, Transactions of the Second Conference [in Russian], Izd-vo AN SSSR (1962), p. 424.Google Scholar
  4. 4.
    K. A. Anikienko, T. K. Skrupach, N. P. Rodionova, and M. K. Baranaev, Kinetika i Kataliz,6, 196 (1965).Google Scholar
  5. 5.
    A. A. Neimysheva and I. L. Knunyants, Zh. Obshch. Khim.,36, 1090 (1966).Google Scholar
  6. 6.
    M. I. Kabachnik, S. T. Ioffe, and T. A. Mastryukova, Zh. Obshch. Khim.,25, 684 (1955).Google Scholar
  7. 7.
    A. A. Neimysheva, G. K. Semin, T. A. Babushkina, and I. L. Knunyants, Dokl. Akad. Nauk SSSR,173, 585 (1967).Google Scholar
  8. 8.
    R. A. J. Jones and A. R. Katritzky, Angew. Chemie,74, 60 (1962).Google Scholar
  9. 9.
    S. M. Markov, A. M. Polekhin, N. A. Loshadkin, G. A. Kostenko, Z. V. Morozova, and M. M. Yakubovich, Zh. Obshch. Khim.,36, 1098 (1966).Google Scholar
  10. 10.
    W. N. Aldridge, Biochem. J.,52, 62, 663 (1952).Google Scholar
  11. 11.
    D. F. Heath, J. Chem. Soc., 3796 (1956).Google Scholar
  12. 12.
    R. F. Hudson and L. Keay, J. Chem. Soc., 1859 (1960).Google Scholar
  13. 13.
    N. A. Loshadkin, S. M. Markov, A. M. Polekhin, A. A. Neimysheva, F. L. Maklyaev, and I. L. Knunyants, Zh. Obshch. Khim.,36, 1105 (1966).Google Scholar
  14. 14.
    L. Larsson, Acta Chem. Scand.,12, 783 (1958).Google Scholar
  15. 15.
    L. Maier, Ber.,94, 3051 (1961).Google Scholar
  16. 16.
    L. Maier, Helv. Chim. Acta,47, 120 (1964).Google Scholar
  17. 17.
    S. Z. Ivin and K. V. Karavanov, Zh. Obshch. Khim.,28, 2958 (1958).Google Scholar
  18. 18.
    R. F. Hudson and L. Keay, J. Chem. Soc., 1859, 1865 (1960).Google Scholar

Copyright information

© Consultants Bureau 1969

Authors and Affiliations

  • A. A. Neimysheva
  • V. I. Savchik
  • M. V. Ermolaeva
  • I. L. Knunyants

There are no affiliations available

Personalised recommendations