Monatshefte für Chemie / Chemical Monthly

, Volume 104, Issue 4, pp 990–997 | Cite as

Bisbiphenylchrom(I) und Ferrocen als Bezugsredoxsysteme zum Vergleich von Halbwellenpotentialen in verschiedenen Lösungsmitteln

  • O. Duschek
  • V. Gutmann
Anorganische, Struktur- und Physikalische Chemie

Bisbiphenylchromium(I) and ferrocene as reference redox systems for the comparison of half wave potentials in different solvents

Abstract

Bisbiphenylchromium(I) and ferrocene are shown to represent suitable reference redox systems in a number of non-aqueous solvents. The difference of their half-wave potentials is nearly equal in each solvent, namely between 1.12 and 1.13 V. Specific interactions are involved between ferriceniumion and water. The extrapolated half-wave potential of bisbiphenylchromium(I) (−0.78±0.04 V vs. sat. Ag/AgCl-electrode) is not substantially influenced by water.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    V. Gutmann, Chemische Funktionslehre. Wien-New York: Springer. 1971.Google Scholar
  2. 2.
    R. Alexander, A. J. Parker, H. J. Sharp undW. E. Waghorne, J. Amer. Chem. Soc.94, 1148 (1972).Google Scholar
  3. 3.
    O. Popovych, Crit. Rev. Anal. Chem.1, 73 (1970).Google Scholar
  4. 4.
    O. Popovych undA. J. Dill, Anal. Chem.41, 456 (1969).Google Scholar
  5. 5.
    J. F. Coetzee, J. M. Simon undR. J. Bertozzi, Anal. Chem.41, 766 (1969).Google Scholar
  6. 6.
    J. F. Coetzee undJ. J. Campion, J. Amer. Chem. Soc.89, 2513 (1967).Google Scholar
  7. 7.
    W. A. Pleskow, Usp. Chim.16, 254 (1947).Google Scholar
  8. 8.
    H. M. Koepp, H. Wendt undH. Strehlow, Z. Elektrochem.64, 483 (1960).Google Scholar
  9. 9.
    I. M. Kolthoff undF. G. Thomas, J. Physic. Chem.69, 3049 (1965).Google Scholar
  10. 10.
    H. Strehlow, The Chemistry of Non-Aqueous Solvents (J. J. Lagowsky, Hrsg.), Kap. 3. New York-London: Academic Press. 1966.Google Scholar
  11. 11.
    D. C. Luehrs, R. W. Nicholas undD. A. Hamm, J. Electroanal. Chem.29, 417 (1971).Google Scholar
  12. 12.
    J. Bardin, J. Electroanal. Chem.28, 157 (1970).Google Scholar
  13. 13.
    A. A. Vlček, Z. anorg. allgem. Chem.304, 109 (1960).Google Scholar
  14. 14.
    A. Rusina undH. P. Schroer, Coll. Czech. Chem. Comm.31, 2600 (1966).Google Scholar
  15. 15.
    A. Rusina, G. Gritzner undA. A. Vlček, Proc. IVth Internat. Congress on Polarography, Prag 1966, S. 79.Google Scholar
  16. 16.
    V. Gutmann undG. Peychal-Heiling, Mh. Chem.100, 1423 (1969).Google Scholar
  17. 17.
    O. Duschek undV. Gutmann, Z. anorg. allgem. Chem.394, 243 (1972).Google Scholar
  18. 18.
    G. Olofsson, Acta Chem. Scand.22, 1352 (1968).Google Scholar
  19. 19.
    M. Kalousek undM. Rálek, Coll. Czech. Chem. Comm.19, 1099 (1954).Google Scholar
  20. 20.
    V. Gutmann undR. Cechak, Mh. Chem.103, 1447 (1972).Google Scholar
  21. 21.
    V. Gutmann undP. Rechberger, wird demnächst veröffentlicht.Google Scholar
  22. 22.
    V. Gutmann undR. Schmid, Mh. Chem.100, 2113 (1969).Google Scholar
  23. 23.
    R. Schmid undV. Gutmann, Mh. Chem.100, 1662 (1969).Google Scholar
  24. 24.
    V. Gutmann undG. Schöber, Mh. Chem.88, 206 (1957).Google Scholar
  25. 25.
    O. Duschek undV. Gutmann, wird demnächst in dieser Zeitschrift veröffentlicht.Google Scholar
  26. 26.
    V. Gutmann, A. Steininger undE. Wychera, Mh. Chem.97, 460 (1966).Google Scholar
  27. 27.
    U. Mayer undV. Gutmann, Structure and Bonding12, 113 (1972).Google Scholar
  28. 28.
    I. M. Kolthoff undM. K. Chantooni, J. Physic. Chem.76, 2024 (1972).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • O. Duschek
    • 1
  • V. Gutmann
    • 1
  1. 1.Institut für Anorganische Chemie der Technischen Hochschule WienÖsterreich

Personalised recommendations