Soviet Applied Mechanics

, Volume 14, Issue 2, pp 167–173 | Cite as

Methods of duality theory in problems of optimal loading of thin plates

  • V. G. Litvinov
  • Yu. I. Rubezhanskii


Thin Plate Duality Theory Optimal Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. S. Levitin and B. T. Polyak, “Methods of minimization in the case of constraints,” Zh. Vychisl. Mat. Mat. Fiz.,6, No. 5, 787–823 (1966).Google Scholar
  2. 2.
    V. G. Litvinov, “Deflection of plates of variable thickness,” Prikl. Mekh.,11, No. 5, 54–61 (1975).Google Scholar
  3. 3.
    V. G. Litvinov, “Some converse problems for deflected plates,” Prikl. Mat. Mekh.,40, No. 4, 682–691 (1976).Google Scholar
  4. 4.
    S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970).Google Scholar
  5. 5.
    J. Céa, Optimization, Theory and Algorithms [Russian translation], Mir, Moscow (1973).Google Scholar
  6. 6.
    S. P. Timoshenko and S. Voinovskii-Kriger, Plates and Shells [in Russian], Nauka, Moscow (1966).Google Scholar
  7. 7.
    S. P. Timoshenko, A Course in the Theory of Elasticity [in Russian], Naukova Dumka, Kiev (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • V. G. Litvinov
  • Yu. I. Rubezhanskii

There are no affiliations available

Personalised recommendations