Soviet Applied Mechanics

, Volume 3, Issue 7, pp 13–16 | Cite as

The solution of the mixed axisymmetric problem from the theory of elasticity for a half-space by the method of p-analytical functions

  • A. A. Kapshivyi
  • G. F. Maslyuk
Article

Keywords

Axisymmetric Problem Mixed Axisymmetric Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. L. Abramyan, N. Kh. Arutyunyan, and A. A. Babloyan, “Symmetric pressure of a circular stamp on an elastic half-space in the presence of adhesion,” Prikl. matem. i mekh., vol. 30, no. 1, 1966.Google Scholar
  2. 2.
    F. D. Gakhov, Boundary Problems [in Russian], Fizmatgiz, Moscow, 1963.Google Scholar
  3. 3.
    V. I. Mossakovskii, “The basic mixed problem from the theory of elasticity for a half-space with a circular line of separation for the boundary conditions,” Prikl matem. i mekh., vol. 18, no. 2, 1954.Google Scholar
  4. 4.
    G. M. Polozhiy, “The method of p-analytical functions in the axisymmetric theory of elasticity,” Scientific Conference of Kiev University, 1956, Vydvo KDU, Kiev, 1957.Google Scholar
  5. 5.
    G. N. Polozhii, “The basic integral representation of p-analytical functions with the characteristic p=xk,” Vkr. matem. zhurnal, vol. 16, no. 2, 1964.Google Scholar
  6. 6.
    G. N. Polozhii, Generalization of the Theory of Analytical functions of the Complex Variable, p-analytical and (p,q)-Analytical Functions, and Certain of Their Applications [in Russian], Izd-vo Kievskogo unta, Kiev, 1965.Google Scholar
  7. 7.
    Ya. S. Uflyand, “The axisymmetric problem of theory of elasticity for a half-space with a circular line of separation for the boundary conditions,” DAN SSSR, vol. 110, no. 4, 1956.Google Scholar

Copyright information

© Consultants Bureau 1967

Authors and Affiliations

  • A. A. Kapshivyi
    • 1
  • G. F. Maslyuk
    • 1
  1. 1.Kiev State UniversityKievUSSR

Personalised recommendations