Applied physics

, Volume 24, Issue 2, pp 131–138 | Cite as

Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals

  • A. Marrakchi
  • J. P. Huignard
  • P. Günter
Photophysics, Laser Chemistry

Abstract

The diffraction efficiency and energy transfer are investigated in photorefractive Bi12SiO20 crystals (BSO). Dependence on fringe spacing, electric fields, light intensity and rise-time constants are reported. The optimum crystallographic orientation for each effect is determined for vertical polarization of the recording beams. It is shown that beam coupling is a very sensitive phenomenon in BSO crystals where charge transport lengths are equivalent to usual fringe spacings. Experimental results are interpreted on the basis of the nonlinear theory of self-diffraction developed by Kukhtarev et al. [10].

PACS

42.30.-d 42.40.-i 42.70.-a 72.40.tw 78.20.Jq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.L. Staebler: InHolographie Recording Materials, ed. by H.M. Smith, Topics Appl. Phys.20 (Springer, Berlin, Heidelberg, New York 1977) pp. 101–132Google Scholar
  2. 2.
    V. Markov, S. Odulov, M. Soskin: Opt. Laser Technol.11, 95–99 (1979)CrossRefGoogle Scholar
  3. 2a.
    A.M. Glass: Opt. Eng.17, 470–479 (1978)Google Scholar
  4. 3.
    R. Orlowski, E. Kratzig: Ferroelectrics26, 831–834 (1980)Google Scholar
  5. 4.
    J. Feinberg, D. Heiman, A.R. Tanguay, R.W. Hellwarth: J. Appl. Phys.51, 1297 (1980)CrossRefADSGoogle Scholar
  6. 4a.
    F. Micheron, G. Bismuth: J. Phys. (Paris) Suppl.33, C2–147 (1972)Google Scholar
  7. 5.
    D. von der Linde, A. Glass, K. Rodgers: Appl. Phys. Lett.26, 22–24 (1975)CrossRefADSGoogle Scholar
  8. 6.
    K. Megumi, H. Kozuka, M. Kobayashi, Y. Furukata: Appl. Phys. Lett.30, 631–633 (1977)CrossRefADSGoogle Scholar
  9. 7.
    P. Gunter, F. Micheron: Ferroelectrics18, 27–38 (1978)Google Scholar
  10. 8.
    J.P. Huignard, F. Micheron: Appl. Phys. Lett.29, 591–593 (1976)CrossRefADSGoogle Scholar
  11. 9.
    J.P. Huignard, J.P. Herriau, P. Aubourg, E. Spitz: Opt. Lett.4, 21–23 (1979)ADSGoogle Scholar
  12. 9a.
    J.P. Huignard, J.P. Herriau: Appl. Opt.16, 1807–1809 (1977)ADSGoogle Scholar
  13. 9b.
    A. Marrakchi, J.P. Huignard, J.P. Herriau: Opt. Commun.34, 15–18 (1980)CrossRefADSGoogle Scholar
  14. 10.
    N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, V. Vinetskii: Terroelectrics22, 949–960 and 961–964 (1979)Google Scholar
  15. 11.
    W.D. Cornish, L. Young: J. Appl. Phys.46, 1252–1254 (1975)CrossRefADSGoogle Scholar
  16. 12.
    D. Staebler, J. Amodei: J. Appl. Phys.43, 1042–1049 (1972)CrossRefADSGoogle Scholar
  17. 13.
    M. Moharam, T. Gaylord, R. Magnusson, L. Young: J. Appl. Phys.50, 5642–5651 (1979)CrossRefADSGoogle Scholar
  18. 14.
    S. Hou, R. Lauer, R. Aldrich: J. Appl. Phys.44, 2652–2658 (1973)CrossRefADSGoogle Scholar
  19. 15.
    A. Krumins, P. Günter: Appl. Phys.19, 153–163 (1979)CrossRefADSGoogle Scholar
  20. 16.
    J.P. Huignard, J.P. Herriau, G. Rivet, P. Gunter: Opt. Lett.5, 102–104 (1980)ADSGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. Marrakchi
    • 1
  • J. P. Huignard
    • 1
  • P. Günter
    • 2
  1. 1.Laboratoire Central de RechercheThomson CSF, Domaine de CorbevilleOrsayFrance
  2. 2.Laboratory of Solid State Physics E.T.H. HönggerbergSwiss Federal Institute of TechnologyZürichSwitzerland

Personalised recommendations