Soviet Physics Journal

, Volume 27, Issue 6, pp 499–503 | Cite as

Pseudopotential calculation of the energy of vacancy formation in binary alloys as a function of the degree of far order

  • E. V. Chulkov
  • V. V. Zhestikov
Solid State Physics


Pseudopotential theory is used to study the dependence of energy of vacancy formation EIVf in binary replacement alloys as a function of the degree of far order η is shown that E IV f =Eo+δE·η]2, where Eo is the energy of vacancy formation in a disordered alloy, δE then contains the ordering energy. It is shown with examples of the alloys CuZn, AuZn, and AgCd that the energy of vacancy formation can decrease with increase in the degree of far order. It is found that in calculating the vacancy formation energy it is necessary to consider lattice relaxation energy, since such consideration can lead to a change in the sign of δE.


Binary Alloy CuZn Formation Energy Lattice Relaxation Relaxation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. A. Smirnov, Molecular-Kinetic Theory of Metals [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    L. A. Girifalco, Statistical Physics of Materials, Wiley (1973).Google Scholar
  3. 3.
    S. M. Kims and W. J. L. Buyers, Phys. Rev. Lett.,45, 383 (1980).Google Scholar
  4. 4.
    S. Chabik and B. Rozenfeld, Appl. Phys.,25, 143 (1981).Google Scholar
  5. 5.
    W. A. Harrison, Pseudopotentials in the Theory of Metals, W. A. Benjamin (1966).Google Scholar
  6. 6.
    V. Heine, M. Cohen, and D. Wire, Pseudopotential Theory [Russian translation], Mir, Moscow (1973).Google Scholar
  7. 7.
    R. Chang and L. M. J. Falikov, Phys. Chem. Solids,32, 465 (1971).Google Scholar
  8. 8.
    E. F. Chulkov, V. E. Panin, and S. G. Psakh'e, Fiz. Met. Metalloved.,51, 928 (1981).Google Scholar
  9. 9.
    G. L. Krasko and Z. A. Gurskii, Pis'ma Zh. Eksp. Teor. Fiz.,9, 596 (1969).Google Scholar
  10. 10.
    D. J. W. Geldart and S. H. Vosko, Canad. J. Phys.,44, 2137 (1966).Google Scholar
  11. 11.
    L. J. Sham, Proc. Roy. Soc.,A283, 33 (1965).Google Scholar
  12. 12.
    P. Vashishta and K. S. Singwi, Phys. Rev.,B6, 875 (1972).Google Scholar
  13. 13.
    G. L. Krasko and N. A. Shevtsova, Dokl. Akad. Nauk SSSR,223, 834 (1975).Google Scholar
  14. 14.
    R. P. Bajpai, J. Phys.,F3, 709 (1973).Google Scholar
  15. 15.
    E. V. Chulkov, V. E. Panin, and S. G. Psakh'e, Fiz. Met. Metalloved.,52, 1296 (1981).Google Scholar
  16. 16.
    Z. D. Popovic and J. P. Carbotte, J. Phys.,F4, 1599 (1974).Google Scholar
  17. 17.
    P. V. S. Rao, J. Phys.,F5, 843 (1975).Google Scholar
  18. 18.
    W. TriftshÄuser and' J. D. McGervey, Appl. Phys.,6, 177 (1975).Google Scholar
  19. 19.
    R. O. Simmons and R. W. Balluffi, Phys. Rev.,119, 600 (1960).Google Scholar
  20. 20.
    A. Seeger, J. Phys.,F3, 248 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • E. V. Chulkov
    • 1
  • V. V. Zhestikov
    • 1
  1. 1.Atmospheric Optics Institute, Siberian BranchAcademy of Sciences of the USSRUSSR

Personalised recommendations