Applied physics

, Volume 25, Issue 2, pp 95–103 | Cite as

Superconductivity of thin films of lead, indium, and tin prepared in the presence of oxygen

  • R. Eichele
  • W. Kern
  • R. P. Huebener
Solids and Surfaces


We have studied the influence of oxygen on the superconducting properties of thin films of lead, indium and tin deposited on glass or sapphire substrates. In addition, the morphological microstructure was investigated by scanning electron microscopy. The film thickness was 1.0 μm, and the partial pressure of O2 during the film deposition was raised up to 1×10−4 Torr. In all three materials the development of a granular structure and a strong increase in the residual electric resistivity was observed due to the O2-treatment. Whereas in the Pb films no change of the critical temperature was found, the In films deposited on glass substrates showed a slight increase ofT c due to the oxygen. The strongest increase ofT c (up to 8%) was observed in the O2-treated Sn films. These results are discussed in terms of the McMillan theory. From our measurements of the critical current densityj c we conclude that edge pinning is dominant in the undoped films. All three materials showed a strong increase ofj c due to the O2-treatment which must be interpreted in terms of bulk pinning.


74.70.Dg 74.60.-w 73.60.Ka 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Gavaler: Appl. Phys. Lett.23, 480 (1973)CrossRefGoogle Scholar
  2. 2.
    R.W. Cohen, B. Abeles: Phys. Rev.168, 444 (1968)CrossRefADSGoogle Scholar
  3. 3.
    G. Deutscher, H. Fenichel, M. Gershenson, E. Grünbaum, Z. Ovadyahu: J. Low Temp. Phys.10, 231 (1973)CrossRefGoogle Scholar
  4. 4.
    J.W. Ekin: Phys. Rev. B12, 2676 (1975)CrossRefADSGoogle Scholar
  5. 5.
    R.B. Pettit, J. Silcox: Phys. Rev. B13, 2685 (1976)CrossRefGoogle Scholar
  6. 6.
    K.E. Gray: Phys. Rev. B13, 3774 (1976)CrossRefADSGoogle Scholar
  7. 7.
    B. Abeles: Phys. Rev. B15, 2828 (1977)CrossRefADSGoogle Scholar
  8. 8.
    T. Worthington, P. Lindenfeld, G. Deutscher: Phys. Rev. Lett.41, 316 (1978)CrossRefADSGoogle Scholar
  9. 9.
    G. Deutscher, B. Bandyopadhyay, T. Chui, P. Lindenfeld, W.L. McLean, T. Worthington: Phys. Rev. Lett.44, 1150 (1980)CrossRefADSGoogle Scholar
  10. 10.
    B. Abeles, R.W. Cohen, G.W. Cullen: Phys. Rev. Lett.17, 632 (1966)CrossRefADSGoogle Scholar
  11. 11.
    H.L. Caswell: J. Appl. Phys.32, 105 (1961)CrossRefGoogle Scholar
  12. 12.
    H.L. Caswell: J. Appl. Phys.32, 2641 (1961)CrossRefGoogle Scholar
  13. 13.
    S. Akselrod, M. Pasternack, S. Bukshpan: J. Low Temp. Phys.17, 375 (1974)CrossRefGoogle Scholar
  14. 14.
    R. Eichele: Thesis, University of Tübingen (1978) (unpublished)Google Scholar
  15. 15.
    W. Kern: Thesis, University of Tübingen (1980) (unpublished)Google Scholar
  16. 16.
    L.P. Gor'kov: Zh. Eksp. Teor. Fiz.36, 1918 (1959); and37, 1407 (1959) [Sov. Phys. JETP9, 1364 (1959); and10, 998 (1960)]Google Scholar
  17. 17.
    B.B. Goodman: IBM J. Res. Dev.6, 63 (1962)Google Scholar
  18. 18.
    B.B. Goodman: Rep. Prog. Phys.29, 445 (1966)CrossRefADSGoogle Scholar
  19. 19.
    R.P. Huebener:Magnetic Flux Structures in Superconductors, Springer Ser. Solid-State Sci.6, (Springer, Berlin, Heidelberg, New York 1979)Google Scholar
  20. 20.
    W.L. McMillan: Phys. Rev.167, 331 (1968)CrossRefADSGoogle Scholar
  21. 21.
    D.M. Ginsberg, R.E. Harris, R.C. Dynes: Phys. Rev. B14, 990 (1976)CrossRefADSGoogle Scholar
  22. 22.
    J.R. Clem, R.P. Huebener, D.E. Gallus: J. Low Temp. Phys.12, 449 (1973)CrossRefGoogle Scholar
  23. 23.
    H. Pavlicek: Thesis, University of Tübingen (1980) (unpublished)Google Scholar
  24. 24.
    H. Pavlicek, K.P. Selig, R.P. Huebener, J.R. Clem: To be publishedGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • R. Eichele
    • 1
  • W. Kern
    • 1
  • R. P. Huebener
    • 1
  1. 1.Physikalisches Institut II, UniversitätTübingenFed. Rep. Germany

Personalised recommendations