Advertisement

Monatshefte für Chemie / Chemical Monthly

, Volume 106, Issue 4, pp 915–923 | Cite as

Über die Struktur vonM(BF4)2·6H2O fürM=Mg2+, Zn2+, Cd2+

Untersuchungen an Salzhydraten, 7. Mitt
  • Maria Manewa
Anorganische, Struktur-und Physikalische Chemie

The structure of M(BF4)2·6H2O (M=Mg2+, Zn2+, Cd2+). Studies of hydrated salts, 7

Abstract

The IR and Raman spectra ofM(BF4)2·6H2O forM=Mg2+, Zn2+ and Cd2+ in the range 4000–140 cm−1 were recorded, as were theirDTA andTG curves up to 500°C. The data obtained confirm the presence of the water complex [M(H2O)6]2+ and of the complex anion BF4 in these compounds. It was also established that the six water molecules in Mg(BF4)2·6H2O and in Zn(BF4)2·6H2O are not crystallographically equivalent, and that hydrogen bonds of the type H2O...H2O...F4B and H2O...H2O...H2O participate in the structure. The energy of the hydrogen bonds H2O...F4B for the three crystal hydrates was also calculated.

The thermal and thermogravimetric data are in agreement with and confirm the spectroscopic data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    B. Moss, D. Russell undD. Sharp, Acta Cryst.14, 330 (1961).Google Scholar
  2. 2.
    D. West, Z. Kristallogr.91, 480 (1935).Google Scholar
  3. 3.
    W. Marchand, Ann. Physique13, 881 (1957).Google Scholar
  4. 4.
    J. Mathieu, C. R. hebdomad. Sé. Acad. Sci.231, 896 (1950).Google Scholar
  5. 5.
    R. Lafomt, Ann. Physique2, 905 (1959).Google Scholar
  6. 6.
    I. Nakagawa undT. Shimanouchi, Spectrochem. Acta20, 429 (1964).Google Scholar
  7. 7.
    Y. Kernarrec, C. R. hebdomad. Sé. Acad. Sci.258, 5836 (1964).Google Scholar
  8. 8.
    V. Ananthanarayanan, J. Chem. Phys.52, 3844 (1970).Google Scholar
  9. 9.
    V. Ananthanarayanan, Z. Physik163, 144 (1961).Google Scholar
  10. 10.
    K. Nakamoto, Infrared Spectra of inorganic and coordination compounds, 2. Aufl., S. 89, 120. 1969.Google Scholar
  11. 11.
    B. Greenwood undN. Greenwood, J. Chem. Soc.1959, 3811.Google Scholar
  12. 12.
    J. Edwads, C. Morrison undF. Rosa, J. Amer. Chem. Soc.77, 226 (1955).Google Scholar
  13. 13.
    J. Goubeau undW. Bues, Z. Anorg. Allgem. Chem.268, 221 (1952).Google Scholar
  14. 14.
    J. Terrasse, H. Poulet undJ. Mathieu, Spectrochem. Acta22, 759, 1707 (1966).Google Scholar
  15. 15.
    F. Kútek, Collect. Czechosl. Chem. Commun.32, 2353 (1967).Google Scholar
  16. 16.
    H. Funk undF. Binder, Z. Anorg. Allgem. Chem.159, 121 (1927).Google Scholar
  17. 17.
    E. Wilke-Dörfurth undG. Baltz, Z. Anorg. Allgem. Chem.159, 197 (1927).Google Scholar
  18. 18.
    Komplexometrische Bestimmungsmethoden mit Titriplex, Merck AG, Darmstadt 24, 41, 53.Google Scholar
  19. 19.
    Analytitscheskaj chimij jalementow —Bor, S. 199. Isd. Nauka, M 1964.Google Scholar
  20. 20.
    R. Hester undR. Plane, Inorg. Chem.3, 768 (1964).Google Scholar
  21. 21.
    J. Elsken undD. Robinson, Spectrochem. Acta17, 1249 (1961).Google Scholar
  22. 22.
    Kolebatelnie spektri w neorganitscheskoi chimii, S. 284. Isd. Nauka, M 1971.Google Scholar
  23. 23.
    O. Theimer, Mh. Chem.81, 301, 302 (1950).Google Scholar
  24. 24.
    S. Pinchas undI. Laulich, Infrared spectra of labelled compounds, S. 43, London: Academic Press. 1971.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Maria Manewa
    • 1
  1. 1.Abteilung für anorganische Chemie des Chemisch-technologischen InstitutsSofia-DarwenitzaBulgarien

Personalised recommendations