Skip to main content
Log in

Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy

  • Invited Paper
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

The noise characteristic of available laser sources limits the sensitivity of many types of nonlinear spectroscopy. We show how to maximize the sensitivity by optimizing the strength of a local oscillator wave in a heterodyne detection scheme without altering the amplitude of the wave being detected. The intensity profile of the optimum local oscillator closely matches that of the incident probe wave, but the optimum intensity is much less than that of the probe under realistic conditions. A general signal-to-noise analysis applicable to all nonlinear spectroscopy techniques is presented along with specific applications to coherent Raman spectroscopy, two-photon absorption, saturation spectroscopy, and optical coherent transient techniques. A simple optimization procedure employing polarization selection rules is described. Detailed calculations are performed for the case of TEM00 waves interacting via a third-order nonlinear susceptibility and for the case where the sample is simultaneously probed at many different frequency combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.S. Letokhov, V.P. Chebotayev:Nonlinear Laser Spectroscopy, Springer Series in Optical Sciences, Vol. 4 (Springer, Berlin, Heidelberg, New York 1977)

    Google Scholar 

  2. A.B. Harvey (ed.):Chemical Applications of Nonlinear Spectroscopy (Academic Press, New York 1978)

    Google Scholar 

  3. R.G. Brewer: InFrontiers of Laser Spectroscopy, ed. by R. Balian, S. Haroche, and S. Liberman (North Holland, Amsterdam 1978) Vol. I, Chap. 4, pp. 343–398

    Google Scholar 

  4. W. Kaiser, C.G.B. Garret: Phys. Rev. Lett.7, 229 (1961)

    Article  ADS  Google Scholar 

  5. W.M. Tolles, R.D. Turner: Appl. Spectrosc.31, 96–103 (1977)

    Article  ADS  Google Scholar 

  6. A. Owyoung: IEEE J. QE-14, 192 and 202 (1978)

    Article  Google Scholar 

  7. J.J. Song, G.L. Eesley, M.D. Levenson: Appl. Phys. Lett29, 567–569 (1976)

    Article  ADS  Google Scholar 

  8. W.J. Jones, B.P. Stoicheff: Phys. Rev. Lett.13, 657 (1964)

    Article  ADS  Google Scholar 

  9. C. Wieman, T.W. Hänsch: Phys. Rev. Lett.36, 1170 (1976)

    Article  ADS  Google Scholar 

  10. G.L. Eesley, M.D. Levenson, W.M. Tolles: IEEE J. QE-14, 45–48 (1978)

    Article  Google Scholar 

  11. F.V. Kowalski, W.T. Hill, A.L. Schawlow: Opt. Lett.2, 112–114 (1978)

    ADS  Google Scholar 

  12. P.F. Liao, G.C. Bjorklund: Phys. Rev. Lett.36, 584 (1976)

    Article  ADS  Google Scholar 

  13. P.D. Maker, R.W. Terhune: Phys. Rev.137A, 801 (1965)

    Article  ADS  Google Scholar 

  14. D. Marcuse:Engineering Quantum Electrodynamics (Harcourt Brace and World, New York 1971) Chap. 6

    Google Scholar 

  15. W.B. Roh, P.W. Schreiber, J.E.P. Taran: Appl. Phys. Lett.29, 174–176 (1976)

    Article  ADS  Google Scholar 

  16. C. Delsart, J.C. Keller: InLaser Spectroscopy III, ed. by J.L. Hall and J.L. Carlsten, Springer Series in Optical Sciences, Vol. 7 (Springer, Berlin, Heidelberg, New York 1977) pp. 154–159

    Google Scholar 

  17. H. Lotem, R.T. Lunch Jr., N. Bloembergen: Phys. Rev. A14, 1748 (1976)

    Article  ADS  Google Scholar 

  18. R.H. Kingston:Detection of Optical and Infrared Radiation, Springer Series in Optical Sciences, Vol. 10 (Springer, Berlin, Heidelberg, New York 1978)

    Google Scholar 

  19. D. Wolf (ed.):Noise in Physical Systems, Springer Series in Electrophysics, Vol. 2 (Springer, Berlin, Heidelberg, New York 1978)

    Google Scholar 

  20. A. Yariv:Introduction to Optical Electronics (Holt Rinehart and Winston, New York 1971) Chap. 11

    Google Scholar 

  21. G.L. Eesley: Ph.D. Thesis, University of Southern California (1978)

  22. J.W. Goodman: ManuscriptStatistical Optics, “Noise in Photographic Detection” (1976)

  23. R.J. Keyes (ed.):Optical and Infrared Detectors, topics Appl. Phys. 19 (Springer, Berlin, Heidelberg, New York 1977)

    Google Scholar 

  24. Noise-equivalent power (NEP) is defined as the optical power required to produce a detector response equivalent to η of (15) and normalized for band width Δν; forK=1, the units of NEP are watts/√Hz.

  25. E.H. Armstrong: I.R.E.9, 3 (1921)

    Google Scholar 

  26. R.G. Brewer, A.Z. Genack: Phys. Rev. Lett.36, 959 (1976)

    Article  ADS  Google Scholar 

  27. R.G. Brewer: private communication

  28. D. Heiman, R.W. Hellwarth, M.D. Levenson, G. Martin: Phys. Rev. Lett.36, 189–192 (1976)

    Article  ADS  Google Scholar 

  29. N. Bloembergen (ed.):Nonlinear Spectroscopy (North Holland, Amsterdam 1977) Chap. 1

    Google Scholar 

  30. N. Bloembergen, M.D. Levenson: InHigh Resolution Laser Spectroscopy, ed. by K. Shimoda, Topics Appl. Phys.13 (Springer, Berlin, Heidelberg, New York 1976) pp. 315–364

    Google Scholar 

  31. D. Grischkowsky, M.M. Loy, P.F. Liao: Phys. Rev. A12, 2544 (1975)

    ADS  Google Scholar 

  32. B. Cagnac, G. Grynberg, F. Biraben: J. Phys.34, 66 (1973)

    Google Scholar 

  33. V.P. Chebotayev, V.S. Letokhov: InProgress in Quantum Electronics, ed. by J.H.Sanders and S.Stenholm (Pergamon Press, London 1976) Vol. IV, Pt. 2, pp. 111–206

    Google Scholar 

  34. Chr.Flytzanis, N.Bloembergen: InProgress in Quantum Electronics, ed. by J.H.Sanders and S.Stenholm (Pergamon Press, London 1976) Vol. IV, Pt. 2, pp. 271–300

    Google Scholar 

  35. J.W.Nibler, G.V.Knighten: InRaman Spectroscopy of Gases and Liquids, ed. by A.Weber, Topics in Current Physics11 (Springer, Berlin, Heidelberg, New York 1977) Ch. 7

    Google Scholar 

  36. R.W.Hellwarth: InProgress in Quantum Electronics, ed. by J.H.Sanders and S.Stenholm (Pergamon Press, London 1976) vol. V, Pt. 1, pp. 1–68

    Google Scholar 

  37. T.W.Hänsch, P.Toschek: Z. Physik236, 213 (1970)

    Article  Google Scholar 

  38. T.W.Hänsch: InNonlinear Spectroscopy, ed. by N.Bloembergen (North Holland, Amsterdam 1977) Chap. 2

    Google Scholar 

  39. C.Bordé, G.Camy, B.Decomps, L.Pottier: In Colloques International du CNRS, No. 217 (1974) p. 231

  40. A.Yariv:Quantum Electronics (Wiley, New York 1975) App. 1

    Google Scholar 

  41. J.J.Song, J.H.Lee, M.D.Levenson: Phys. Rev. A17, 1439–1447 (1978)

    Article  ADS  Google Scholar 

  42. J.L.Hall: private communication

  43. R.T.Lynch,Jr.: Ph.D. Thesis, Harvard University (1977) (unpublished)

  44. S.D.Kramer, N.Bloembergen: Phys. Rev. B14, 4654–4669 (1976)

    Article  ADS  Google Scholar 

  45. R.T.Hodgson, P.P.Sorokin, J.J.Wynne: Phys. Rev. Lett.32, 343 (1974)

    Article  ADS  Google Scholar 

  46. M.M.T.Loy: Phys. Rev. Lett.36, 1454–1457 (1976)

    Article  ADS  Google Scholar 

  47. P.F.Liao, J.E.Bjorkholm, J.P.Gordon:Phys. Rev. Lett.39, 18 (1977)

    Article  ADS  Google Scholar 

  48. P.F.Liao, N.P.Economou, R.R.Freeman: Phys. Rev. Lett.39, 1473 (1977)

    Article  ADS  Google Scholar 

  49. R.G.Devoe, R.G.Brewer: Phys. Rev.40, 862 (1978)

    ADS  Google Scholar 

  50. R.G.Brewer, R.L.Shoemaker: Phys. Rev. Lett.27, 631 (1971)

    Article  ADS  Google Scholar 

  51. P.D.Maker, R.W.Terhune, C.M.Savage: Phys. Rev. Lett.12, 507–509 (1964)

    Article  ADS  Google Scholar 

  52. U.Fano, G.Racah:Irreduceable Tensor Sets (Academic Press, New York 1951)

    Google Scholar 

  53. G.C.Bjorklund: IEEE J QE-11, 287–296 (1975)

    Article  Google Scholar 

  54. G.D.Boyd, J.P.Gordon: Bell System Tech. J.40, 489–508 (1961)

    Google Scholar 

  55. G.I.Kachen, W.H.Lowdermilk: Phys. Rev. A14, 1472–1474 (1976) and16, 1657–1664 (1977)

    Article  ADS  Google Scholar 

  56. For example, the Meret Corp. MDA 7708, Silicon PIN Diode with integral trans resistance amplifier. Similar devices are now being developed for use in fiber optic applications. See also [Ref. 20b, Chap. 6]

  57. OMA catalog, Princeton Applied Research Corp. Princeton, New Jersey (1975)

  58. H.Z.Cummings, H.B.Swinney: InProgress in Optics (North Holland, Amsterdam 1970) Vol. VIII, Chap. 3

    Google Scholar 

  59. A.Papoulis:Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York 1965) Chap. 14

    MATH  Google Scholar 

  60. L.Mandel, E.Wolf: Rev. Mod. Phys.37, 231 (1965)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Science Foundation and Office of Naval Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levenson, M.D., Eesley, G.L. Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy. Appl. Phys. 19, 1–17 (1979). https://doi.org/10.1007/BF00900531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00900531

PACS

Navigation