Skip to main content
Log in

Calculation of the diffusion coefficient in crystals

  • Solid State Physics
  • Published:
Soviet Physics Journal Aims and scope

Abstract

The diffusion coefficient for vacancies is calculated on the basis of the Kubo formula. Here no assumptions are made about the character of the migration of the atom into the vacant site, and the calculation is carried out on the basis of a Hamiltonian proposed earlier by the author. A general expression is obtained for the temperature dependence of the diffusion coefficient that is valid in a wide temperature range. The case T » TD (TD is the Debye temperature) is especially analyzed, where the diffusion process is in the main connected with over-barrier jumping. The corresponding temperature dependence is determined by the expression T3/2exp (−U/κBT, where U is the height of the potential barrier that separates neighboring sites. The dependence of the diffusion coefficient on the mass of the diffusing atom is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. G. L. Bukhbinder, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 9, 105 (1984).

    Google Scholar 

  2. Yu. A. Kashlev, Teor. Mat. Fiz.,14, 235 (1973).

    Google Scholar 

  3. Yu. A. Kashlev, Teor. Mat. Fiz.,24, 265 (1975).

    Google Scholar 

  4. P. Gosar, Nuovo Cim.,31, 781 (1964).

    Google Scholar 

  5. D. Lepski, Phys. Status Solidi,35, 697 (1969).

    Google Scholar 

  6. A. F. Andreev and I. M. Lifshits, Zh. Eksp. Teor. Fiz.,56, 2067 (1969).

    Google Scholar 

  7. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  8. P. Gluck, Proc. Phys. Soc.,90, 787 (1967).

    Google Scholar 

  9. R. Kishore, Phys. Rev.,173, 856 (1968).

    Google Scholar 

  10. V. K. Goyal and P. K. Sharma, Physica,101B, 376 (1980).

    Google Scholar 

  11. D. N. Zubarev, Usp. Fiz. Nauk,71, 71 (1960).

    Google Scholar 

  12. N. M. Plakida, in: Statistical Physics and Quantum Field Theory [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  13. Firsov (ed.), Polarons [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  14. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York (1980).

    Google Scholar 

  15. Z. Fluge, Problems in Quantum, Mechanics [Russian translation], Vol. 1, Mir, Moscow (1974).

    Google Scholar 

  16. B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in the Solid State [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  17. M. Omini, Nuovo Cim.,54B, 116 (1968).

    Google Scholar 

  18. S. D. Gertsriken and I. Ya. Dekhtyar, Diffusion in Metals and Alloys in the Solid Phase [in Russian], Moscow (1960).

  19. G. F. Nardelly and L. Reatto, Physica,31, 541 (1965).

    Google Scholar 

  20. S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Absolute Chemical Reaction Rates [Russian translation], IL, Moscow (1948) [Theory of Rate Processes, McGraw-Hill, New York (1941)].

    Google Scholar 

  21. I. M. Klinger, Phys. Rep.,94, No. 5, 183 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 60–65, June, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukhbinder, G.L. Calculation of the diffusion coefficient in crystals. Soviet Physics Journal 28, 491–495 (1985). https://doi.org/10.1007/BF00900378

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00900378

Keywords

Navigation