Applied physics

, Volume 24, Issue 3, pp 273–278 | Cite as

Superheating of thin films for optical recording

  • P. Kivits
  • R. de Bont
  • P. Zalm
Photophysics, Laser Chemistry


Two methods for calculating the temperature in a thin film on a substrate during laser exposure are discussed. A simple algebraic expression gives a satisfactory estimate for the maximum temperature if radial diffusion of heat is negligible. A numerical method is applied to calculate the temperature profile in a tellurium film on a PMMA substrate. The calculations show that for pulse times below about 10 μs, the temperature at which hole opening occurs, is considerably above the melting point of tellurium. This indicates that for small pulses the solid film is locally superheated due to the limiting kinetics of the melting process.


42.30 Nt 64.70 Dv 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.Kenney, D.Lou, P.Janssen, J.Wagner, F.Zernike, R.McFarlane, A.Chan: Proc. IEEE Compon Spring 1977, p. 31Google Scholar
  2. 2.
    J.P.J.Heemskerk, W.G.Ophey, W.J.Kleuters, G.B.Gerritsen, K.Bulthuis: Proc. CLEA, (1979)Google Scholar
  3. 3.
    K.Bulthuis, M.G.Carasso, J.P.J.Heemskerk, P.J.Kivits, W.J.Kleuters, P.Zalm. IEEE Spectrum16–8 26 (1979)Google Scholar
  4. 4.
    J.F.Ready: J. Appl. Phys.36, 462 (1965)CrossRefGoogle Scholar
  5. 5.
    D.Maydan: Bell Syst. Tech. J.50, 1761 (1971)Google Scholar
  6. 6.
    M.O.AboeloFotoh, R.J.von Gutfeld: J. Appl. Phys.43, 3789 (1972)CrossRefADSGoogle Scholar
  7. 7.
    U.C.Paek, A.Kestenbaum: J. Appl. Phys.44, 2260 (1973)CrossRefADSGoogle Scholar
  8. 8.
    R.A.Ghez, R.A.Laff: J. Appl. Phys.46, 2103 (1975)CrossRefADSGoogle Scholar
  9. 9.
    M.Lax: J. Appl. Phys.48, 3919 (1977)CrossRefADSGoogle Scholar
  10. 10.
    K.Takamoto, S.Nakayama: Rev. Electr. Commun. Lab.21, 647 (1973)Google Scholar
  11. 11.
    V.K.Saulycv:Integration of Equations of Parabolic Type by the Method of Nets (Pergamon Press, New York 1964)Google Scholar
  12. 12.
    Id. Ref. 11 p. 149Google Scholar
  13. 13.
    H.S.Carslaw, J.C.Jaeger:Conduction of Heat in Solids, 2nd. ed. (Clarendon Press, Oxford 1959) p. 264Google Scholar
  14. 14.
    Id. Ref.13 p. 262Google Scholar
  15. 15.
    Thermophysical Properties of Matter, Vol. 2, ed. by Y.S. Touloukian (IFII Plenum, New York, Washington 1970)Google Scholar
  16. 16.
    Yu. Volkov, L.S.Palatnik, A.T.Pugachev. Sov. Phys. JETP43, 1171 (1976)Google Scholar
  17. 17.
    A.E.Bell: RCA Rev.40, 295 (1979)ADSGoogle Scholar
  18. 18.
    G.M.Blom: Appl. Phys. Lett.35, 81 (1979)CrossRefADSGoogle Scholar
  19. 19.
    R.A.Bartolini, A.E.Bell, F.W.Spong: Proc. CLEA, (1979)Google Scholar
  20. 20.
    P.R.Couchman: Philos. Mag. A40, 637 (1979)Google Scholar
  21. 21.
    J.K.Kristensen, R.M.J.Cotterill: Philos. Mag.36, 437 (1977)Google Scholar
  22. 22.
    I.V.Melikhov, B.M.Dolgonosov, V.G.Pechnikov: Russ. J. Phys. Chem.53, 359 (1979)Google Scholar
  23. 23.
    N.G.Ainslie, J.D.Mackenzie, D.Turnbull: J. Phys. Chem.65, 1718 (1961)Google Scholar
  24. 24.
    M.M.Mastynyuk, G.E.Gerrero: Russ. J. Phys. Chem.48, 656 (1974)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • P. Kivits
    • 1
  • R. de Bont
    • 1
  • P. Zalm
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations