Advertisement

Mathematical Geology

, Volume 18, Issue 8, pp 743–757 | Cite as

Isofactorial models for granulodensimetric data

  • M. Armstrong
  • G. Matheron
Articles

Abstract

Existing isofactorial models developed for disjunctive kriging using a cutoff grade on one variable are extended to the bivariate case which arises when dealing with granulo-densimetric data, such as are obtained from coal washing or mineral processing.

Key words

bivariate isofactorial models disjunctive kriging granulodensimetric data coal washing mineral processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, M., 1980, Application of geostatistics to the problem of estimating coal reserves. Docteur Ing. thesis: Centre de Géostatistique, Fountainebleau, France, p. 148.Google Scholar
  2. Armstrong, M., 1984, Using geostatistics to predict the characteristics of washed coal: Min. Eng., Apr., p. 369–373.Google Scholar
  3. Armstrong, M. and Matheron, G., 1986, Disjunctive kriging revisited. Parts I and II: Math. Geol., 18, p.Google Scholar
  4. Feller, W., 1968, An introduction to probability theory and its applications, vol. II: Wiley & Sons, New York, 626 p.Google Scholar
  5. Kim, Y. C., Barua, S. L., Baafi, E. Y., 1982, Feasibility study of applying geostatistics to coal washability data: AIME Annual General Meeting, Dallas, Texas, p.Google Scholar
  6. Matheron, G., 1973, Le krigeage disjonctif, Internal note N-360: Centre de Géostatistique, Fontainebleau, 40 p.Google Scholar
  7. Metheron, G., 1975a, Compléments sur les modèles isofactoriels, Internal note N-432: Centre de Géostatistique, Fontainebleau, 21 p.Google Scholar
  8. Matheron, G., 1975b, Modèles isofactoriels discrets et modèles de Walsh, Internal Note N-449: Centre de Géostatisque, Fountainebleau, 24 p.Google Scholar
  9. Matheron, G., 1976, A simple substitute for conditional expectation: The disjunctive kriging,in M. Guarascio (Ed.). Advanced geostatistics in the mining industry, Proceedings, NATO A.S.I.: Reidel & Co., Dordrecht, p. 221–236.Google Scholar
  10. Matheron, G., 1980, Modèles isofactoriels pour l'effet zéro, Internal report N-659: Centre de Géostatistique, Fountainebleau, p.Google Scholar
  11. Matheron, G., 1984, Isofactorial models and change of support,in G. Verly (Ed.), Geostatistics for natural resources characterization, NATO A.S.I.: Reidel & Co., Dordrecht, Netherlands, p.Google Scholar
  12. Matheron, G., 1985a, Une méthodologie générale pour les modèles isofactoriels discrets: Sci. Terre-Inform., v. 21, p. 1–78.Google Scholar
  13. Matheron, G., 1985b, Change of support for diffusion-type random functions: Math. Geol., v. 17, no. 2, p. 137–166.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • M. Armstrong
    • 1
  • G. Matheron
    • 1
  1. 1.Centre de Geostatistique et de Morphologie MathematiqueEcole Nationale Superieure des Mines de ParisFontainebleauFrance

Personalised recommendations