Skip to main content
Log in

High-sensitivity read-write volume holographic storage in reduced KNbO3 crystals

  • Solids and Surfaces
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

Reduced KNbO3 is a photoconductive ferroelectric in which holograms can be recorded by the photorefractive effect. Read-write volume hologram storage and erase sensitivities ofS −1=100 J/cm2 andS −1=84 J/cm2 (S=d(Δn)/d(I0t)‖t=0) have been measured at zero applied electric field, where the charge transport is shown to be due to diffusion of photoexcited electrons. By applying an electric field along thec-axis, the migration length of the photoexcited electrons becomes comparable to the holographic grating spacing. This leads to storage sensitivities comparable to high-resolution photographic plates. Experimental data on storage and erase sensitivity as a function of the grating spacing, applied electric field, writing light intensity and temperature are reported and interpreted on the basis of the theoretical results of Young et al. and Amodei. Changes of the intensity ratio of the writing beams by self diffraction (beam coupling), reflections from surfaces and the residual dark conductivity are assumed to cause experimental results which deviate from the theoretical models. It is shown, that in reduced KNbO3 and other ferroelectric photoconductors having photocarrier transport lengths much larger than the unit cell dimension, photovoltaic currents do not contribute significantly to the build-up of space-charges leading to the photorefractive effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Staebler: InHolographic Recording Materials, Topics Appl. Phys.20 (Springer, Berlin, Heidelberg, New York 1977) pp. 101–132

    Google Scholar 

  2. E. Krätzig, R. Orlowski: Appl. Phys.15, 133–139 (1978)

    Article  ADS  Google Scholar 

  3. R. L. Townsend, J. T. La Macchina: J. Appl. Phys.41, 5188–5192 (1970)

    Article  ADS  Google Scholar 

  4. J. B. Thaxter, M. Kastigian: Appl. Opt.13, 913–924 (1974)

    ADS  Google Scholar 

  5. P. Günter: Ferroelectrics22, 671 (1978)

    Google Scholar 

  6. P. Günter, U. Flückiger, J. P. Huignard, F. Micheron: Ferroelectrics13, 297 (1976)

    Google Scholar 

  7. P. Günter, F. Micheron: Ferroelectrics18, 27–38 (1978)

    Google Scholar 

  8. D. Von der Linde, A. M. Glass, K. F. Rodgers: Appl. Phys. Lett.26, 22–24 (1975)

    Article  ADS  Google Scholar 

  9. M. Peltier, F. Micheron: J. Appl. Phys.48, 4683–4690 (1977)

    Article  Google Scholar 

  10. J. P. Huignard, F. Micheron: Appl. Phys. Lett.29, 591–593 (1976)

    Article  ADS  Google Scholar 

  11. K. Megumi, H. Kozuka, M. Kobayashi, Y. Furukata. Appl. Phys. Lett.30, 631–633 (1977)

    Article  ADS  Google Scholar 

  12. L. Young, W. K. Y. Wong, M. L. W. Thewalt, W. D. Cornish: Appl. Phys. Lett.24, 264–265 (1974)

    Article  Google Scholar 

  13. D. von der Linde, A. M. Glass: Appl. Phys.8, 85–100 (1975)

    Article  ADS  Google Scholar 

  14. D. I. Staebler, J. J. Amodei: J. Appl. Phys.43, 1042–1050 (1972)

    Article  ADS  Google Scholar 

  15. A. Krumins, P. Günter: Phys. Stat. Sol. (a)55, K 185 (1979)

    Article  Google Scholar 

  16. A. Krumins, P. Günter: Appl. Phys.19, 153–163 (1979)

    Article  ADS  Google Scholar 

  17. A. M. Glass, D. von der Linde, T. J. Negran: Appl. Phys. Lett.25, 233–240 (1974)

    Article  Google Scholar 

  18. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetski: Ferroelectrics22, 949–964 (1979)

    Google Scholar 

  19. H. Kogelnik: Bell Syst. Tech. J.48, 2909 (1969)

    Google Scholar 

  20. D. L. Staebler, W. Philips: Appl. Opt.30, 788–794 (1974)

    ADS  Google Scholar 

  21. K. G. Belabaev, V. B. Markov, Markov, S. G. Odulov: Ferroelectrics18, 137–139 (1978)

    Google Scholar 

  22. R. Orlowski, E. Krätzig, H. Kurz: Opt. Commun.20, 171–174 (1977)

    Article  ADS  Google Scholar 

  23. R. R. Shah, D. M. Kim, T. A. Rabson, F. K. Tittel: J. Appl. Phys.47, 5421–5431 (1976); Appl. Phys. Lett.29, 84–86 (1976)

    Article  ADS  Google Scholar 

  24. U. Flückinger, H. Arend: J. Cryst. Growth43, 406–417 (1978)

    Article  Google Scholar 

  25. Y. Ninomiya: J. Opt. Soc. Am.63, 1124–1130 (1973)

    Google Scholar 

  26. D. W. Vahey: J. Appl. Phys.46, 3510–3515 (1975)

    Article  ADS  Google Scholar 

  27. R. Magnusson, T. K. Gaylord: J. Appl. Phys.47, 190–199 (1976)

    Article  ADS  Google Scholar 

  28. M. G. Moharam, L. Young: J Appl. Phys.48, 3230–3236 (1977)

    Article  ADS  Google Scholar 

  29. K. Blotekjaer: J. Appl. Phys.48, 2495–2501 (1977)

    Article  ADS  Google Scholar 

  30. E. Wiesendanger Ferroelectrics1, 141–148 (1970)

    Google Scholar 

  31. P. Günter: Electro-Optics/Laser Proc. Intern. '76 Brighton U.K., ed. by M. G. Jerrard (IPC Science and Technology Press, Guildford Surrey U.K. 1976) pp. 121–130

    Google Scholar 

  32. P. Günter: Opt. Commun.11, 285–290 (1974)

    Article  ADS  Google Scholar 

  33. E. Wiesendanger. Ferroelectrics6, 263–281 (1974)

    Google Scholar 

  34. J. J. Amodei: RCA Rev.32, 185–198 (1971)

    Google Scholar 

  35. W. F. Berg, V. M. Fridkin, P. Günter, H. Stähli: Appl. Phys. Lett.33, 215 (1978)

    Article  ADS  Google Scholar 

  36. E. V. Bursian, Ya. G. Girshberg, A. V. Ruzhnikov: Phys. Stat. Sol. (b)74, 689–693 (1976)

    Google Scholar 

  37. Y. Ohmori et al.: Jpn. J. Appl. Phys.15, 2263–2264 (1976)

    Article  Google Scholar 

  38. M. G. Moharam, T. K. Gaylord, R. Magnusson, L. Young: J. Appl. Phys.50, 5642–5651 (1979)

    Article  ADS  Google Scholar 

  39. M. A. Krivoglaz: Fiz. Tverd. Tela11, 2230 (1969);12, 1705 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günter, P., Krumins, A. High-sensitivity read-write volume holographic storage in reduced KNbO3 crystals. Appl. Phys. 23, 199–207 (1980). https://doi.org/10.1007/BF00899719

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00899719

PACS

Navigation