Advertisement

Applied physics

, Volume 23, Issue 1, pp 93–97 | Cite as

Magnetic texture analysis of polycrystalline ferromagnetic materials

General theory
  • V. G. Masheva
  • J. N. Kotzev
  • A. V. Apostolov
Solids and Surfaces

Abstract

A theory allowing the full determination of the texture function of a polycrystalline ferromagnet with cubic symmetry of the polycrystallites is developed. Standard group theoretical methods are used, which allow to make maximum use of the full symmetry of the system, without imposing any restriction on the generality of the problem. The magnetocrystalline anisotropy energy of the textured sample is expanded in spherical harmonics and the corresponding energy of the crystallites is expanded in a series of symmetry-adapted spherical harmonics. The texture function is expanded in a series of symmetry-adapted generalized spherical harmonics. A relation between the coefficients of these expansions is determined. It is shown that the texture function can be experimentally calculated using torque curves.

PACS

75.30Gw 02.20+b 61.50-f 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.P. Kudrjavtsev:Textures in Metals and Alloys (Metallurgia, Moscow 1965) (in Russian)Google Scholar
  2. 2.
    H.J. Bunge:Mathematische Methoden der Texturanalyse (Akademie Verlag, Berlin 1968)Google Scholar
  3. 3.
    D.A. Warshalovitsh, A.H. Moscalev, V.K. Hersonski:Quantum Theory of Angular Momentum (Leningrad, Nauka 1975) (in Russian)Google Scholar
  4. 4.
    A.S. Viglin: Fiz. Tverdogo Tela2, 2463 (1960) [(Sov. Phys. Solid State2, 2195 (1960)]MathSciNetGoogle Scholar
  5. 5.
    M. Pernot, R. Penelle, P. Lacombe: IEEE Trans. Mag. MAG-10, 120 (1974)CrossRefGoogle Scholar
  6. 6.
    R.J. Roe: J. Appl. Phys.36, 2024 (1965)CrossRefGoogle Scholar
  7. 7.
    R.R. Birss, G.J. Keeler: Phys. Stat. Sol. (b)64, 357 (1974)Google Scholar
  8. 8.
    V.G. Masheva, J.N. Kotzev, A.V. Apostolov: To be publishedGoogle Scholar
  9. 9.
    R.R. Birss:Symmetry and Magnetism (North-Holland, Amsterdam 1966)Google Scholar
  10. 10.
    A.M. Leushin:Tables of Functions Transforming by Irreduable Representations of Crystal Groups (Nauka, Moscow 1968) (in Russian)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • V. G. Masheva
    • 1
  • J. N. Kotzev
    • 1
  • A. V. Apostolov
    • 1
  1. 1.Department of PhysicsUniversity of SofiaSofiaBulgaria

Personalised recommendations