Soviet Physics Journal

, Volume 33, Issue 7, pp 619–624 | Cite as

Two-temperature channel model of a direct current arc

  • A. P. Kirpichnikov
Plasma Physics


A relatively simple method is proposed for computing the gas and electron temperatures in an arc plasmotron channel within the framework of the self-consistent two-temperature channel model of an arc discharge. This method affords the possibility of obtaining the gas and electron temperature distribution with good enough accuracy for given discharge parameters (current intensity in the discharge, power inserted in the discharge, etc.) as a function of the radial coordinate in both nonequilibrium (Te ≠ Tai) and quasi-equilibrium (Te = Tai within the current conducting channel) cases. The results obtained can be utilized in model computations to estimate the gas and electron temperatures as well, possibly, as in a number of engineering computations.


Temperature Distribution Model Computation Electron Temperature Engineering Computation Channel Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. I. Asinovskii, E. P. Pakhomov, and I. M. Yartsev, Chemical Reactions in a Low-Temperature Plasma [in Russian], INKhS Akad. Nauk SSSR, Moscow (1977).Google Scholar
  2. 2.
    E. I. Asinovskii, E. P. Pakhomov, and I. M. Yartsev, Teplofiz. Vysok. Temp.,16, No. 1, 28 (1978).Google Scholar
  3. 3.
    Yu. P. Raizer, Principles of the Modern Physics of Gas-Discharge Processes [in Russian], Nauka, Moscow (1980).Google Scholar
  4. 4.
    Yu. P. Raizer, Physics of a Gas Discharge [in Russian], Nauka, Moscow (1987).Google Scholar
  5. 5.
    K. J. Clark and F. P. Ineropera, AIAA Paper No. 71-593, Easton (1971).Google Scholar
  6. 6.
    I. P. Nazarenko and I. G. Panevin, Theory of the Electrical Arc under Stimulated Heat Transfer Conditions [in Russian], Nauka, Novosibirsk (1977).Google Scholar
  7. 7.
    V. S. Engel'sht, ed., Mathematical Modeling of an Electrical Arc [in Russian], Ilim, Frunze (1983).Google Scholar
  8. 8.
    V. M. Lelevkin, E. P. Pankhomov, V. F. Semenov, and V. S. Engel'sht, Teplofiz. Vysok. Temp.,24, No. 3, 587 (1986).Google Scholar
  9. 9.
    M. F. Zhukov and A. S. Koroteev, eds., Theory of Thermal Electric Arc Plasmas [in Russian], Pt. 1, Nauka, Novosibirsk (1987).Google Scholar
  10. 10.
    S. V. Dresvin, ed., Physics and Engineering of a Low-Temperature Plasma [in Russian], Atomizdat, Moscow (1972).Google Scholar
  11. 11.
    G. B. Dwight, Tables of Integrals and Other Mathematical Formulas [Russian translation], Nauka, Moscow (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. P. Kirpichnikov
    • 1
  1. 1.S. M. Kirov Kazan Chemical Technology InstituteRussia

Personalised recommendations