Soviet Physics Journal

, Volume 32, Issue 2, pp 106–109 | Cite as

Propagation of optical pulses at an absorption line in the presence of a weak nonlinearity

  • É. V. Lugin
  • A. V. Shapovalov
Physics of Elementary Particles and Field Theory


We examine the propagation of short pulses of light in a resonantly absorbing, weakly nonlinear medium within the limits of a model described by the nonlinear Schrödinger equation. The possibility of transforming pulses of various forms into a soliton signal due to the effects of self-interaction is studied. On the basis of the study of spectra for the associated linear problem, we investigate the break-up of an initial pulse into solitons. We have obtained solutions for two particular cases of the initial pulse.


Soliton Absorption Line Short Pulse Linear Problem Optical Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. E. Zakharov and A. B. Shabat, Zh. Éksp. Teor. Fiz.,61, No. 1 (7), 118 (1971).Google Scholar
  2. 2.
    N. G. Basov and A. M. Prokhorov, Usp. Fiz. Nauk,57, 485 (1955).Google Scholar
  3. 3.
    V. E. Zuev and M. V. Kabanov, Transmission of Optical Signals in the Earth's Atmosphere (in the Presence of Obstacles) [in Russian], Moscow, Sov. Radio (1977).Google Scholar
  4. 4.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Materials [in Russian], Moscow, Nauka (1982).Google Scholar
  5. 5.
    V. I. Karpman and E. M. Maslov, Zh. Éksp. Teor. Fiz.,73, No. 2 (8), 537 (1977).Google Scholar
  6. 6.
    Yu. A. Berezin and V. I. Karpman, Zh. Éksp. Teor. Fiz.,51, No. 5 (11), 1557 (1966).Google Scholar
  7. 7.
    V. I. Karpman and V. P. Sokolov, Zh. Éksp. Teor. Fiz.,54, No. 5, 1568 (1968).Google Scholar
  8. 8.
    V. G. Makhan'kov, O. K. Pashaev, and Kh. T. Kholmurodov, Preprint OIYaI R5-85-561, Dubna (1985).Google Scholar
  9. 9.
    V. G. Makhan'kov, O. K. Pashaev, and Kh. T. Kholmurodov, Preprint OIYaI R5-85-562, Dubna (1985).Google Scholar
  10. 10.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Problem Method [in Russian], Nauka, Moscow (1980), p. 90.Google Scholar
  11. 11.
    E. Janke, F. Emde, and F. Losche, Special Functions [Russian translation], Nauka, Moscow (1977), p. 194.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • É. V. Lugin
    • 1
  • A. V. Shapovalov
    • 1
  1. 1.Siberian Physicotechnical InstituteTomsk UniversityUSSR

Personalised recommendations