Advertisement

Soviet Physics Journal

, Volume 32, Issue 6, pp 440–443 | Cite as

Possibility of quark maintenance by a monopole

  • A. S. Vshivtsev
  • A. V. Tatarintsev
Elementary Particle Physics and Field Theory
  • 14 Downloads

Abstract

The behavior of a quark in a monopole-type field is studied, the field being the solution of the equations of motion of a classical field for nonlinear effective Lagrangian in the IR region. The Dirac equation (at J = 0) in this field can be transformed to a supersymmetric form (in the energy ground state, equal to zero, which leads to the possibility of quark maintenance). The solution of the classical Wong equations in the monopole field is considered and the quantities which are conserved are determined.

Keywords

Dirac Equation Energy Ground State Classical Field Energy Ground Supersymmetric Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. T'Hooft, Nucl. Phys.,B79, 276 (1974).Google Scholar
  2. 2.
    A. M. Polyakov, Pis'ma Zh. Eksp. Teor. Fiz.,20, 430 (1974).Google Scholar
  3. 3.
    M. K. Prasad and C. M. Somerfield, Phys. Rev. Lett.,35, 760 (1975).Google Scholar
  4. 4.
    V. A. Rubakov, Nucl. Phys.,B203, 311 (1982); Pis'ma Zh. Eksp. Teor. Fiz.,33, 658 (1981).Google Scholar
  5. 5.
    C. G. Callan, Phys. Rev.,D15, 2058 (1982).Google Scholar
  6. 6.
    F. Wilczek, Phys. Rev. Lett.,48, 1146 (1982).Google Scholar
  7. 7.
    A. I. Alekseev, B. A. Abruzov, and V. A. Baikov, Preprint IFVE 81-106 [in Russian], Serpukhov (1981); Teor. Mat. Fiz.,52, 187 (1982).Google Scholar
  8. 8.
    A. I. Alekseev and B. A. Abruzov, Preprint IFVE 83-117 [in Russian], Serpukhov (1983).Google Scholar
  9. 9.
    M. Baker, J. S. Ball, and F. Zachariazen, Nucl. Phys.,B229, 445 (1983).Google Scholar
  10. 10.
    M. Baker and F. Zachariazen, Phys. Lett.,108B, 206 (1982).Google Scholar
  11. 11.
    A. I. Alekseev and B. A. Abruzov, Preprint IFVE 84-85 [in Russian], Serpukhov (1984).Google Scholar
  12. 12.
    M. Baker, F. Chen, and Y. S. Wu, Phys. Lett.,B131, 439 (1983).Google Scholar
  13. 13.
    A. S. Vshivtsev, V. Ch. Zhukovskii, and A. V. Tatarintsev, dep. VINITI, 16.07.86, No. 5199 [in Russian], Tomsk (1986).Google Scholar
  14. 14.
    S. K. Wong, Nuov. Cim.,65A, 689 (1970).Google Scholar
  15. 15.
    R. Jackiw and C. Rebbi, Phys. Rev.,D13, 3398 (1976).Google Scholar
  16. 16.
    W. J. Marciano and I. J. Muzinich, Phys. Rev. Lett.,50, 1035 (1983).Google Scholar
  17. 17.
    E. Witten, Princeton preprint based on lectures given at ICTP, Triest (1981).Google Scholar
  18. 18.
    E. Witten, Nucl. Phys.,B188, 513 (1981).Google Scholar
  19. 19.
    P. Salomonson and J. W. Van Holten, Nucl. Phys.,B196, 509 (1982).Google Scholar
  20. 20.
    F. Ravndal, Lectures Given at 1984 CERN School of Physics, Hardanger, Norway, 11–24 June, 1984.Google Scholar
  21. 21.
    A. Khare and J. Maharana, Nucl. Phys.,B244, 409 (1984).Google Scholar
  22. 22.
    U. Heinz, Phys. Lett.,144B, No. 3–4, 229 (1984).Google Scholar
  23. 23.
    A. I. Alekseev, Preprint, IFVE 85–89 [in Russian], Serpukhov (1985).Google Scholar
  24. 24.
    A. A. Sokolov, I. M. Ternov, V. Ch. Zhukovskii, and A. V. Borisov, Gauge Fields [in Russian], Mosk. Gos. Univ., Moscow (1986).Google Scholar
  25. 25.
    A. Stern, Phys. Rev.,D15, 3672 (1977).Google Scholar
  26. 26.
    L. G. Feher, Acta Phys. Pol.,15, 919 (1984).Google Scholar
  27. 27.
    T. T. Wu and C. N. Yang, Phys. Rev.,D12, 3845 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. S. Vshivtsev
    • 1
  • A. V. Tatarintsev
    • 1
  1. 1.Moscow Institute of Radio Technology, Electronics, and AutomationUSSR

Personalised recommendations