Soviet Physics Journal

, Volume 32, Issue 6, pp 421–424 | Cite as

Weakly singular perturbations of a discrete spectrum

  • V. B. Gostev
  • A. R. Frenkin
Elementary Particle Physics and Field Theory
  • 13 Downloads

Abstract

We consider weakly singular perturbations λ¦x¦ν(0<ν<2) of an even restoring potential. We compute the matrix elements of the perturbation together with the additional point potential associated with the perturbation. It is shown that even for unperturbed wave functions, the matrix elements exist when 0 < ν < 3/2. The series for the Rayleigh-Schrödinger coefficients converge in all orders for the same interval in ν, regardless of the form of the restoring potential. For odd states, the matrix elements of the perturbation exist when 0 < ν < 3, while estimates for the Rayleigh-Schrödinger coefficients give the boundary ν = 2.

Keywords

Wave Function Matrix Element Singular Perturbation Discrete Spectrum Additional Point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Academic Press, New York (1980).Google Scholar
  2. 2.
    E. Harrel, Ann. Phys.,105, 379 (1977).Google Scholar
  3. 3.
    J. Klauder, Acta Phys. Austriaca Suppl.,11, 341 (1973).Google Scholar
  4. 4.
    V. B. Gostev, V. S. Mineev, and A. R. Frenkin, Teor. Mat. Fiz.,69, 102 (1986).Google Scholar
  5. 5.
    H. Ezawa, J. Klauder, and J. Shepp, J. Math. Phys.,16, 783 (1975).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, Oxford (1974).Google Scholar
  7. 7.
    V. M. Galitskii, B. M. Karnakov, and V. I. Kogan, Problems in Quantum Mechanics [in Russian], Nauka, Moscow (1981).Google Scholar
  8. 8.
    E. T. Copson, Asymptotic Expansions, Cambridge University Press (1965).Google Scholar
  9. 9.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to Quantum Field Theory [in Russian], Nauka, Moscow (1984).Google Scholar
  10. 10.
    F. Calogero, J. Math. Phys.,10, 2191 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • V. B. Gostev
    • 1
  • A. R. Frenkin
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations