The moon and the planets

, Volume 22, Issue 2, pp 191–200 | Cite as

Study of Mars dynamics from lander tracking data analysis

  • N. Borderies
  • G. Balmino
  • L. Castel
  • B. Moynot


After the touchdown of the two Viking landers on Mars, radio tracking measurements have been performed between them and Earth-based stations. With use of the first 9 months of data, we have improved the rotation rate and the mean orientation of the spin axis of Mars, referred to its mean orbit. For the first time, some nutations terms have also been estimated. Nevertheless the precise determination of the spin axis motion will require additional data collected during the extended mission. Our solution includes also the lander locations and the relativistic parameter γ.


Data Analysis Additional Data Rotation Rate Relativistic Parameter Precise Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balmino, G.: 1978,Approximation Methods in Geodesy, Herbert Wichmann Verlag, Karlsruhe.Google Scholar
  2. Borderies, N.: 1979, ‘Theory of Mars Rotation in Euler Angles’, to be published inAstron. Astrophys. Google Scholar
  3. Brouwer, D. and Clemence, G. M.: 1961,Methods of Celestial Mechanics, Academic Press, New York.Google Scholar
  4. Deprit, A.: 1969,Celest. Mech. 1, 12.Google Scholar
  5. Hori, G.: 1966,Publ. Astron. Soc. Japan 18, 287.Google Scholar
  6. Lowell, P.: 1914,Astron. J. 28, 169.Google Scholar
  7. Mayo, A. P., Blackshear, W. T., Tolson, R. H., Michael Jr., W. H., Kelly, G. M., Brenkle, J. P., and Komarek, T. A.: 1977,J. Geophys. Res. 82, 4297.Google Scholar
  8. Michael Jr., W. H., Tolson, R. H., Mayo, A. P., Blackshear, W. T., Kelly, G. M., Cain, D. L., Brenkle, J. P., Shapiro, I. I., and Reasenberg, R. D.: 1976,Science 193, 803.Google Scholar
  9. Moyer, T. D.: 1971, ‘Mathematical Formulation of the Double-Precision Orbit Determination Program’, JPL Technical Report 32-1527.Google Scholar
  10. Standish Jr., E. M., Keesey, M. S. W. and Newhall, X. X.: 1976, ‘JPL Development Ephemeris N 96’, JPL Technical Report 32-1603.Google Scholar
  11. Sturms Jr., F. M.: 1971, ‘Polynomial Expressions for Planetary Equators and Orbit Elements with Respect to the Mean 1950.0 Coordinate Systems’, JPL Technical Report, 32-1508.Google Scholar
  12. Tyler, G. L., Brenkle, J. P., Komarek, T. A., and Zygielbaum, A. I.: 1977,J. Geophys. Res. 82, 4335.Google Scholar
  13. Ward, W. R.: 1973,Science 181, 260.Google Scholar
  14. Ward, W. R.: 1974,J. Geophys. Res. 79, 3375.Google Scholar
  15. Ward, W. R.: 1977,J. Geophys. Res. 84, 237.Google Scholar
  16. Ward, W. R., Burns, J. A., and Toon, O. B.: 1977,J. Geophys. Res. 84, 243.Google Scholar

Copyright information

© D. Reidel Publishing Co. 1980

Authors and Affiliations

  • N. Borderies
    • 1
  • G. Balmino
    • 1
  • L. Castel
    • 1
  • B. Moynot
    • 1
  1. 1.Groupe de Recherches de Géodésie SpatialeCentre National d'Etudes SpatialesToulouseFrance

Personalised recommendations