The moon and the planets

, Volume 22, Issue 2, pp 141–152 | Cite as

Resonances and close approaches. I. The Titan-Hyperion case

  • R. Bevilacqua
  • O. Menchi
  • A. Milani
  • A. M. Nobili
  • P. Farinella
Article

Abstract

The orbits of Titan and Hyperion represent an interesting case of orbital resonance of order one (ratio of periods 3/4), which can be studied within a reasonable accuracy by means of the planar restricted three-body problem. The behaviour of this resonance has been investigated by numerical integrations, of which we show the results in terms of the Poincaré mapping in the plane of the coordinates η = ✓[(2L − 2G)] cos (\(\tilde \omega \)H − t)and ξ = −,✓[(2L − 2G)] sin (\(\tilde \omega \)Ht)keeping a constant value of the Jacobi integral throughout all integrations. We find the numerical ‘invariant curves’ corresponding to low and high eccentricity resonance locking (which seem stable, at least during the limited time span of our experiments) and show that the observed libration of Hyperion's pericenter about the conjunction lies inside the stable high eccentricity region. If initial conditions are chosen outside the stable zones, we have no more stable librations, but a chaotic behaviour causing successive close approaches to Titan.

We discuss these results both from the point of view of the mathematical theory of invariant curves, and with the aim of understanding the origin of the resonance locking in this case. The tidal evolution theory cannot be rigorously tested by such experiments (because of the dissipative terms which change the Jacobi constant); however, we note that the time scale of chaotic evolution is by many orders of magnitude smaller than the tidal dissipation time scale, so that the chaotic regions of the phase space cannot be crossed by a slow and ‘smooth’ evolution. Therefore, our results seem to favour the hypothesis that Hyperion was formed via accumulation of the planetesimals originally inside a stable island of libration, while Titan was depleting by collisions or ejections the zones where the bodies could not escape the chaotic behaviour.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V.: 1976,Les Méthodes Mathématiques de la Mécanique Classique (French translation), MIR, Moscow.Google Scholar
  2. Brouwer, D.: 1937,Astron. J. 46, 199.Google Scholar
  3. Colombo, G. and Franklin, F. A.: 1973, in B. Tapley and V. Szebehely (eds.),Recent Advances in Dynamical Astronomy, Reidel, Dordrecht.Google Scholar
  4. Colombo, G., Franklin, F. A., and Shapiro, I. I.: 1974,Astron. J. 79, 61.Google Scholar
  5. Goldreich, P.: 1965,Mon. Not. R. Astron. Soc.,130, 159.Google Scholar
  6. Goldreich, P. and Soter, S.: 1966,Icarus 5, 375.Google Scholar
  7. Greenberg, R.:Astron. J. 78, 338.Google Scholar
  8. Greenberg, R.: 1977,Vistas in Astronomy 21, 209.Google Scholar
  9. Moser, J.: 1955,Comm. Pure Applied Math. 8, 409.Google Scholar
  10. Moser, J.: 1973,Stable and Random Motions in Dynamical Systems Princeton University Press, Princeton.Google Scholar
  11. Peale, S. J.: 1976,Ann. Rev. Astron. Astrophy. 14, 215.Google Scholar
  12. Poincaré, H.: 1892,Les Méthodes Nouvelles de la Mécanique Céleste, Tome I, Gouthier-Villars, Paris.Google Scholar
  13. Poincaré, H.: 1899,Les Méthodes Nouvelles de la Mécanique Céleste, Tome III, Gouthier-Villars, Paris.Google Scholar
  14. Roy, A. E.: 1979,Proceedings of the NATO Advanced Study Institute ‘Instabilities in Dynamics’, Cortina, 1978 (in press).Google Scholar
  15. Sinclair, A. T.: 1972,Mon. Not. R. Astron. Soc. 160, 169.Google Scholar
  16. Smale, S.: 1967,Bull. Amer. Math. Soc. 73, 747.Google Scholar
  17. Woltjer, J. Jr.: 1928,Ann. Sternwacht Leiden 16, part 3.Google Scholar

Copyright information

© D. Reidel Publishing Co. 1980

Authors and Affiliations

  • R. Bevilacqua
    • 1
  • O. Menchi
    • 1
  • A. Milani
    • 1
  • A. M. Nobili
    • 1
  • P. Farinella
    • 2
  1. 1.Università di PisaItaly
  2. 2.Osservatorio Astronomico di BreraMerateItaly

Personalised recommendations