Applied physics

, Volume 8, Issue 4, pp 333–340 | Cite as

Infrared stimulated Raman generation: Effects of gain focussing on threshold and tuning behaviour

  • D. Cotter
  • D. C. Hanna
  • R. Wyatt
Contributed Papers

Abstract

It is shown that for generation of infrared radiation by stimulated Raman scattering, the diffraction spread of the Stokes wave can have a significant effect on the threshold. Compared with an analysis in which gain focussing is neglected, the threshold powers may be much higher with a corresponding reduction in tuning range. The design of a Raman oscillator is considerably influenced by these diffraction effects, and also it is found that the Stokes wave is subject to frequency-pulling which is dependent on the pump power.

Index Headings

Tunable lasers Infrared Stimulated Raman effect Gain focussing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.Schmidt, W.Apt: Z. Naturforsch.27A, 1373 (1972)Google Scholar
  2. 1a.
    W.Schmidt, W.Apt: IEEE J. Quant. Electr.QE-10, 792 (1974)CrossRefGoogle Scholar
  3. 2.
    R.Frey, F.Pradere: Opt. Commun.12, 98 (1974)CrossRefADSGoogle Scholar
  4. 3.
    M.Rokni, S.Yatsiv: Phys. Letters24A, 277 (1967)CrossRefADSGoogle Scholar
  5. 4.
    P.P.Sorokin, N.S.Shiren, J.R.Lankard, E.C.Hammond, T.G.Zazyaka: Appl. Phys. Letters10, 44 (1967)CrossRefGoogle Scholar
  6. 5.
    P.P.Sorokin, J.R.Lankard: IEEE J. Quant. Electr.QE-9, 227 (1973)CrossRefGoogle Scholar
  7. 6.
    J.L.Carlsten, P.C.Dunn: Opt. Commun.14, 8 (1975)CrossRefADSGoogle Scholar
  8. 7.
    D.Cotter, D.C.Hanna, P.A.Karkkainen, R.Wyatt: Opt. Commun. (1975), to be publishedGoogle Scholar
  9. 8.
    J.J.Wynne, P.P.Sorokin: J. Phys. B. (Atom. Molec. Phys.)8, L37 (1975)CrossRefADSGoogle Scholar
  10. 9.
    H.Kogelnik: Appl. Opt.4, 1562 (1965)ADSGoogle Scholar
  11. 10.
    L.Casperson, A.Yariv: Appl. Phys. Letters12, 355 (1968)CrossRefGoogle Scholar
  12. 11.
    L.Casperson, A.Yariv: Appl. Opt.11, 462 (1972)ADSGoogle Scholar
  13. 12.
    G.J.Ernst, W.J.Witteman: IEEE J. Quant. Electr.QE-9, 911 (1973)CrossRefGoogle Scholar
  14. 13.
    W.J.Witteman, G.J.Ernst: Appl. Phys.6, 297 (1975)CrossRefADSGoogle Scholar
  15. 14.
    G.J.Ernst, W.J.Witteman: IEEE J. Quant. Electr.QE-10, 37 (1974)CrossRefGoogle Scholar
  16. 15.
    L.W.Casperson: IEEE J. Quant. Electr.QE-10, 629 (1974)CrossRefGoogle Scholar
  17. 16.
    U.Ganiel, Y.Silberberg: Appl. Opt.14, 306 (1975)ADSGoogle Scholar
  18. 17.
    J.Ducuing:Proc. Intern. School of Physics Enrico Fermi, Course XLII, Quantum Optics, Ed. by R.J.Glauber, (Academic Press, New York, London 1969) pp. 421–472Google Scholar
  19. 18.
    M.Lax, M.H.Louisell, W.B.McKnight: Phys. Rev. A11, 1365 (1975)CrossRefADSGoogle Scholar
  20. 19.
    O.Rahn, M.Maier: Phys. Rev. A9, 1427 (1974)CrossRefADSGoogle Scholar
  21. 20.
    H.Kogelnik, T.Li: Appl. Opt.5, 1550 (1966)ADSGoogle Scholar
  22. 21.
    A.Owyoung: Appl. Phys. Letters26, 168 (1975)CrossRefADSGoogle Scholar
  23. 22.
    I.M.Beterov, Yu. A.Matyugin, V.P.Chebotaev: Sov. Phys. JETP37, 756 (1973)ADSGoogle Scholar
  24. 23.
    G.D.Boyd, W.D.Johnston, I.P.Kaminow: IEEE J. Quant. Electr.QE-5, 203 (1969)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • D. Cotter
    • 1
  • D. C. Hanna
    • 1
  • R. Wyatt
    • 1
  1. 1.Department of ElectronicsUniversity of SouthamptonSouthamptonUK

Personalised recommendations