Soviet Physics Journal

, Volume 34, Issue 4, pp 283–286 | Cite as

Wave phenomena during creep in macrocrystalline aluminum

  • V. I. Danilov
  • A. A. Yavorskii
  • L. B. Zuev
  • V. E. Panin
Solid State Physics


A wave model of plastic flow, which has been theoretically substantiated and experimentally verified under the conditions of active quasistatic loading of diverse materials, is being developed on the basis of concepts of the autocatalytic nature of elementary acts of plastic deformation. Data from the study of the evolution of distortion fields during low-temperature creep of macrocrystalline aluminum are given in order to explain the tighter relation between the parameters of plastic-deformation waves and the characteristics of the elementary processes of plastic shear. The wave nature of this evolution is emphasized and a linear correlation is found between the creep rate and the velocity of the plasticity waves. The activation volumes of the processes controlling the velocity of the plastic waves and the creep rate are shown to be correlated.


Aluminum Plastic Deformation Linear Correlation Creep Rate Plastic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. M. Strunin, Dislocation Dynamics [in Russian], Naukova Dumka, Kiev (1975).Google Scholar
  2. 2.
    A. I. Landau and V. N. Vydashenko, Metallofizika, A, No.4, 3 (1982).Google Scholar
  3. 3.
    V. E. Panin, E. F. Dudarev, and L. S. Bushnev, Structure and Mechanical Properties of Substitutional Solid Solutions [in Russian], Metallurgiya, Moscow (1971).Google Scholar
  4. 4.
    V. I. Trefilov (ed.), Strain Hardening and Fracture of Polycrystalline Metals [in Russian], Naukova Dumka, Kiev (1989).Google Scholar
  5. 5.
    J. Lepinoux and L. P. Kubin, Sc. Metall.,21, 833 (1988).Google Scholar
  6. 6.
    H. M. Zbib and E. S. Aifantic, Sc. Metall.,22, 1331 (1988).Google Scholar
  7. 7.
    V. V. Nemoshkalenko (ed.), Cooperative Deformation Processes [in Russian], Naukova Dumka, Kiev (1989).Google Scholar
  8. 8.
    Yu. V. Grinyaev and N. V. Chertova, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 36 (1990).Google Scholar
  9. 9.
    V. E. Panin, L. B. Zuev, V. I. Danilov, and N. M. Minkh, Dokl. Akad. Nauk SSSR,308, No. 6, 1375 (1989).Google Scholar
  10. 10.
    K. V. Frolov, V. E. Panin, and L. B. Zuev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 19 (1990).Google Scholar
  11. 11.
    L. B. Zuev, V. I. Danilov, and N. M. Minkh, Zavod. Lab., No. 2, 90 (1990).Google Scholar
  12. 12.
    A. J. Kennedy, Processes of Creep and Fatigue in Metals, Wiley, New York (1963).Google Scholar
  13. 13.
    M. M. Myshlyaev, Imperfections of the Crystal Structure and the Martensitic Transformation [in Russian], Nauka, Moscow (1972).Google Scholar
  14. 14.
    V. I. Danilov, L. B. Zuev, and N. M. Minkh, Physics of Defects of the Surface Layers of Materials [in Russian], A. F. Ioffe Physicotechnical Institute, Leningrad (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • V. I. Danilov
    • 1
  • A. A. Yavorskii
    • 1
  • L. B. Zuev
    • 1
  • V. E. Panin
    • 1
  1. 1.Institute of Physics of Strength and Material ScienceSiberian Branch of the Academy of Sciences of the USSRUSSR

Personalised recommendations