Soviet Physics Journal

, Volume 28, Issue 10, pp 773–776 | Cite as

Conditions for the appearance of gravitational ultrarelativistic spin-orbital interaction

  • R. M. Plyatsko
  • A. L. Vynar
  • Ya. N. Pelekh
Elementary-Particle Physics and Field Theory


A qualitative analysis of the energy and momentum integrals for the Mathisson-Papapetrou equations in a Schwarzschild field is employed to determine the conditions under which all solutions of the exact Mathisson-Papapetrou equations corresponding to fixed initial coordinate and velocity values differ significantly from the solution of the abbreviated equations normally used for the same initial data. Numerical computer calculations provide additional indication of a difference in the world lines of the exact Mathisson-Papapetrou equations from solutions of the geodesic equations at ultrarelativistic velocity values. For high energy particles entering into the composition of cosmic rays one can expect appearance of gravitational ultrarelativistic spin-orbital interaction upon motion of such particles in the field of a neutron star.


Qualitative Analysis Initial Data Numerical Computer Neutron Star Energy Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Mathisson, Acta Phys. Polon.,6, 163 (1937).Google Scholar
  2. 2.
    A. Papapetrou, Proc. R. Soc,A209, 248 (1951).Google Scholar
  3. 3.
    C. W. Misiaer, C. Torn, and J. Wheeler, Gravitation, Vol. 2, W. H. Freeman (1973).Google Scholar
  4. 4.
    F. Pirani, Acta Phys. Polon.,15, 389 (1956).Google Scholar
  5. 5.
    C. Moeller, Commun. Dublin Inst. Adv. Studies,A5, 3 (1949).Google Scholar
  6. 6.
    R. M. Plyatsko and A. L. Vynar, Dokl. Akad. Nauk SSSR,263, No. 5, 1125 (1982).Google Scholar
  7. 7.
    W. Tulczyjew, Acta Phys. Polon.,18, 393 (1959).Google Scholar
  8. 8.
    W. Dixon, Nuov. Cim.,34, 317 (1964).Google Scholar
  9. 9.
    S. Rasband, Phys. Rev. Lett.,30, 111 (1973).Google Scholar
  10. 10.
    R. M. Plyatsko, Candidate's Dissertation [in Russian], Minsk (1979).Google Scholar
  11. 11.
    M. Sh. Yakupov, Kazan' University Collected Student Works, Physics [in Russian] (1965).Google Scholar
  12. 12.
    R. Micoulaut, Z. Phys.,206, 394 (1967).Google Scholar
  13. 13.
    R. Wald, Phys. Rev.,D6, 406 (1972).Google Scholar
  14. 14.
    Ya. N. Pelekh, in: Collected Reports of the All-Union School of Young Scholars “Theoretical and Applied Problems in Computational Mathematics” [in Russian], A. A. Samarskii (ed.), M. V. Keldyshev Applied Mathematics Institute, Academy of Sciences of the USSR, Moscow (1981), p. 137.Google Scholar
  15. 15.
    Ya. N. Pelekh, in: Mathematical Methods and Physicomechanical Fields, No. 15 [in Russian], Naukova Dumka, Kiev (1982), p. 19.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • R. M. Plyatsko
    • 1
  • A. L. Vynar
    • 1
  • Ya. N. Pelekh
    • 1
  1. 1.Institute for Applied Problems in Mechanics and MathematicsUSSR

Personalised recommendations