Advertisement

Soviet Physics Journal

, Volume 30, Issue 12, pp 1056–1060 | Cite as

Electron emission from Al, Pt, Ag, and Au surfaces under the action of resonant photons with λ=2537 and 1850 Å

  • A. I. Korotkov
  • L. K. Mitryukhin
Optics and Spectroscopy
  • 12 Downloads

Abstract

An original variant of an electronic device is described, which can be used for gamma-process selection under ionized gas conditions. The device is based on a Hanley and Schaffernicht electron gun. Selection of photons and metastable atoms is performed by a quartz tube located in axial symmetry with the primary electron gun. The desired signal is measured from the flow of secondary electrons emitted from Al, Pt, Ag, and Au surfaces under the action of resonant photons radiated from the levels Hg(63P1) and Hg(61P1). For γ=2537 Å the following values were obtained for γph 9.1, 3.8, 1.1, 0.25. Analogous values of γph for λ=1850 Å were equal to 45.5, 10.8, 6.5, 3.2. The γph values are in units of 10−4.

Keywords

Quartz Electronic Device Axial Symmetry Secondary Electron Quartz Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. V. Sokolov, Optical Properties of Metals [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  2. 2.
    L. N. Dobrentsov and M. V. Gomoyunova, Emission Electronics [in Russian], Nauka, Moscow (1966).Google Scholar
  3. 3.
    M. Kaminsky, Atomic and Ionic Impact Phenomena on Metal Surfaces, Springer-Verlag (1965).Google Scholar
  4. 4.
    A. M. Brodskii and Yu. Ya. Gurevich, Theory of Electron Emission from Metals [in Russian], Nauka, Moscow (1973).Google Scholar
  5. 5.
    K. D'yuk and R. Park, Usp. Fiz. Nauk,111, 139 (1973).Google Scholar
  6. 6.
    V. M. Proleiko, Elektron. Prom.,11–12, 3 (1978).Google Scholar
  7. 7.
    Zanderna (ed.), Methods for Surface Analysis [Russian translation], Mir, Moscow (1979).Google Scholar
  8. 8.
    M. V. Gomoyunova, Usp. Fiz. Nauk,136, No. 1, 105 (1982).Google Scholar
  9. 9.
    S. I. Anisimov, V. A. Benderskii, and D. Farkash, Usp. Fiz. Nauk,122, 185 (1977).Google Scholar
  10. 10.
    B. Feuerbacher and R. F. Willis, J. Phys. Ser. C.,9, 169 (1976).Google Scholar
  11. 11.
    H. Conrad, G. Ertl, J. Küppers, and S. W. Wane, Phys. Rev. Lett.,42, 1082 (1979).Google Scholar
  12. 12.
    G. L. Weissler, Handbuch der Physik,21, 342 (1956).Google Scholar
  13. 13.
    M. P. Ogrin'sh, in: Sensibilization Fluorescence of Vapor and Metal Mixtures [in Russian], Riga (1968), pp. 18–24.Google Scholar
  14. 14.
    S. M. Kazakov, A. I. Korotkov, and O. B. Shpenk, Zh. Éksp. Teor. Fiz.,78, No. 5, 1687 (1980).Google Scholar
  15. 15.
    E. I. Shekhmeister, R. N. Wasserman, and L. S. Maizel', Technological Studies in Electrovacuum Production [in Russian], Vysshaya Shkola, Moscow (1967).Google Scholar
  16. 16.
    H. Massie and E. Barhop, Electron and Ionic Impact Phenomena, Vol. 4, Oxford Univ. Press, NJ (1980).Google Scholar
  17. 17.
    A. I. Korotkov, N. I. Petrov, and G. M. Sorokin, Secondary Ion and Photo-Ion Emission [in Russian], KhFTI Akad. Nauk Ukr. SSR. Khar'kov (1983), p. 263.Google Scholar
  18. 18.
    A. I. Korotkov, S. A. Korotkov, and L. K. Mitryukhin, Reports to the 7th All-Union Conference on Interaction of Atomic Particles with Solids [in Russian], Minsk (1984), p. 218.Google Scholar
  19. 19.
    E. W. McDaniel and E. A. Mason, The Mobility and Diffusion of Ions in Gases, Krieger, New York (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. I. Korotkov
    • 1
  • L. K. Mitryukhin
    • 1
  1. 1.I. N. Ul'yanov Chuvash State UniversityUSSR

Personalised recommendations