Zeitschrift für Vererbungslehre

, Volume 94, Issue 4, pp 336–348 | Cite as

Infection of transformable cells ofHaemophilus influenzae by bacteriophage and bacteriophage DNA

  • Walter Harm
  • Claud S. Rupert
Article

Summary

A phage HP1, infecting transformable cells ofHaemophilus influenzae Rd, has been isolated. The general properties of the wild type and of a clear plaquemutantc1 employed for most of the experiments are described. Phage DNA is infective for transformableHaemophilus cells with an efficiency (plaqueforming units of the original phage recovered as DNA-infected cells) of up to 6×10−3. The competence ofHaemophilus cells for infection with phage DNA parallels the competence for transformation with bacterial DNA.

Both HP1 and thec1 mutant are able to lysogenize their host, and the lysogenic cells are readily induced by UV. Competent non-lysogenicHaemophilus cells can be infected by DNA of lysogenic cells, thereby giving rise to phage progeny. Thus, the phage genetic material can be introduced into competentHaemophilus cells in three different ways: injection from intact phage, and infection with either phage DNA or with bacterial DNA carrying the prophage.

The UV inactivation curves for infectious phage DNA and for complete phages are similar, both indicating the occurrance of host-cell reactivation. Photoreactivationin vitro of infectious phage DNA takes place to about the same high extent as observed with bacterial transforming DNA.

The usefulness of this system for investigating bacterial transformation and biological effects ofin vitro treatment of DNA is discussed.

Keywords

Biological Effect General Property Genetic Material Transformable Cell High Extent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. H.: Bacteriophages, pp. 443–522. New York: Interscience 1959.Google Scholar
  2. Alexander, H. E., andG. Leidy: Induction of streptomycin resistance in sensitiveH. influenzae by extracts containing DNA from resistantH. influenzae. J. exp. Med.97, 17–31 (1953).Google Scholar
  3. Barnhart, B. J., andR. M. Herriott: Penetration of deoxyribonucleic acid intoH. influenzae. Biochim. biophys. Acta (Amst.)76, 25–39 (1963).Google Scholar
  4. Burgi, E., andA. D. Hershey: Specifity and concentration limit in self-protection against mechanical breakage of DNA. J. molec. Biol.4, 313–315 (1962).Google Scholar
  5. Cavalieri, L. F., M. Rosoff andB. H. Rosenberg: Studies on the structure of nucleic acids. X. On the mechanism of denaturation. J. Amer. chem. Soc.78, 5239–5247 (1956).Google Scholar
  6. Davison, P. F.: The effect of hydrodynamic shear on the deoxyribonucleic acid from T2 and T4 bacteriophages. Proc. nat. Acad. Sci. (Wash.)45, 1560–1568 (1959).Google Scholar
  7. —: andD. Freifelder: The physical properties of the deoxyribonucleic acid from T7 bacteriophage. J. molec. Biol.5, 643–649 (1962).Google Scholar
  8. Dulbecco, R.: Experiments on photoreactivation of bacteriophages inactivated with ultraviolet radiation. J. Bact.59, 329–347 (1950).Google Scholar
  9. Ellison, S. A., R. R. Feiner andR. F. Hill: A host effect on bacteriophage survival after ultraviolet irradiation. Virology11, 294–296 (1960).Google Scholar
  10. Földes, J., andT. A. Trautner: Infectious DNA from a newly isolatedB. subtilis phage. Z. Vererbungsl. to be published (1964).Google Scholar
  11. Garen, A., andN. D. Zinder: Radiological evidence for partial genetic homology between bacteriophage and host bacteria. Virology1, 347–376 (1955).Google Scholar
  12. Goodgal, S. H., andR. M. Herriott: Studies on transformations ofH. influenzae. I. Competence. J. gen. Physiol.44, 1201–1227 (1961).Google Scholar
  13. Goodgal, S. H., C. S. Rupert andR. M. Herriott: Photoreactivation ofH. influenzae transforming factor for streptomycin resistance by an extract ofE. coli B. In: The chemical basis of heredity (W. H. McElroy andB., Glass, Eds.), pp. 341–343. Baltimore: Johns Hopkins Press 1957.Google Scholar
  14. Guthrie, G. D., andR. L. Sinsheimer: Infection of protoplasts of E. coli by subviral particles of bacteriophage ΦX174. J. molec. Biol.2, 297–305 (1960).Google Scholar
  15. ——: Observations on the infection of bacterial protoplasts with the deoxyribonucleic acid of bacteriophage ΦX174. Biochim. biophys. Acta (Amst.)72, 290–297 (1963).Google Scholar
  16. Harm, W.: On the relationship between host-cell reactivation and UV reactivation in UV-indicated phages. Z. Vererbungsl.94, 67–79 (1963).Google Scholar
  17. Herriott, R. M.: Formation of heterozygotes by annealing a mixture of transformable DNAs. Proc. nat. Acad. Sci. (Wash.)47, 146–153 (1961).Google Scholar
  18. Howard-Flanders, P., andL. Theriot: A method for selecting radiation-sensitive mutants ofE. coli. Genetics47, 1219–1224 (1962).Google Scholar
  19. Jacob, F., andE. L. Wollman: Sexuality and the genetics of bacteria. New York: Academic Press 1961.Google Scholar
  20. Kaiser, A. D.: The production of phage chromosome fragments and their capacity for genetic transfer. J. molec. Biol.4, 275–287 (1962).Google Scholar
  21. —, andD. S. Hogness: The transformation of E. coli with deoxyribonucleic acid isolated from bacteriophage λ dg. J. molec. Biol.2, 392–415 (1960).Google Scholar
  22. Lehman, I. R.: The deoxyribonucleases of E. coli. J. biol. Chem.235, 1479–1487 (1960).Google Scholar
  23. Mandell, J. D., andA. D. Hershey: A fractionating column for analysis of nucleic acids. Analyt. Biochem.1, 66–77 (1960).Google Scholar
  24. Marmur, J., andD. Lane: Strand separation and specific recombination in deoxyribonucleic acids: Biological studies. Proc. nat. Acad. Sci. (Wash.)46, 453–461 (1960).Google Scholar
  25. Rörsch, A., A. Edelman andJ. A. Cohen: The gene-controlled radiation sensitivity inE. coli. Biochim. biophys. Acta (Amst.)68, 263–270 (1963).Google Scholar
  26. Romig, W. R.: Infection ofBac. subtilis with phenol-extracted bacteriophages. Virology16, 452–459 (1962).Google Scholar
  27. Rupert, C. S.: Photoreactivation of transforming DNA by an enzyme from baker's yeast. J. gen. Physiol.43, 573–595 (1960).Google Scholar
  28. —: Discussion following a paper byA. H. Doermann. J. cell. comp. Physiol.58, Suppl. 1, 89–90 (1961).Google Scholar
  29. —: Photoenzymatic repair of ultraviolet damage in DNA. I. Kinetics of the reaction. J. gen. Physiol.45, 704–724 (1962a).Google Scholar
  30. —: Photoenzymatic repair of ultraviolet damage in DNA. II. Formation of an enzymesubstrate complex. J. gen. Physiol.45, 725–741 (1962b).Google Scholar
  31. —, andS. H. Goodgal: Shape of ultra-violet inactivation curves of transforming deoxyribonucleic acid. Nature (Lond.)185, 556–557 (1960).Google Scholar
  32. Sauerbier, W.: Evidence for a nonrecombinational mechanism of host-cell reactivation of phage. virology16, 398–404 (1962a).Google Scholar
  33. —: The bacterial mechanism reactivating UV-irradiated phage in the dark (host-cell reactivation). Z. Vererbungsl.93, 220–228 (1962b).Google Scholar
  34. Sinsheimer, R. L., B. Starman, C. Nagler andS. Guthrie: The process of infection with bacteriophage ΦX174. I. Evidence for a “replicative form”. J. molec. Biol.4, 142–160 (1962).Google Scholar
  35. Stuy, J. H.: Studies on the radiation inactivation if microorganisms. V. Deoxyribonucleic acid metabolism in ultraviolet-irradiatedH. influenzae. J. Bact.78, 49–58 (1959).Google Scholar
  36. Weigle, J. J.: Induction of mutations in a bacterial virus. Proc. nat. Acad. Sci. (Wash.)39, 628–636 (1953).Google Scholar

Copyright information

© Springer-Verlag 1963

Authors and Affiliations

  • Walter Harm
    • 1
    • 2
  • Claud S. Rupert
    • 1
  1. 1.Department of BiochemistryJohns Hopkins University School of Hygiene and Public HealthBaltimore 5
  2. 2.Genetisches InstitutKöln-Lindenthal

Personalised recommendations