Advertisement

Zeitschrift für Vererbungslehre

, Volume 94, Issue 4, pp 331–335 | Cite as

The effect of cyanide and azide on the mutagenic activity of the pyrrolizidine alkaloid heliotrine inDrosophila melanogaster

  • N. G. Brink
Article

Summary

Neither cyanide nor azide were found to increase the spontaneous sex-linked lethal frequency or the chromosome breakage frequency inDrosophila. However, both inhibitors produced a slight increase in the heliotrine induced sex-linked lethal and chromosome breakage frequencies in all broods except for the possible exception of the first, the increase for the combined brood totals being statistically significant. Possible mechanisms underlying the enhancing effects of both cyanide and azide are discussed.

Keywords

Cyanide Alkaloid Azide Enhance Effect Mutagenic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Auerbach, C.: The study of chemical mutagens by brood pattern analysis and by the scoring of ratios between visible and lethal mutations. Z. indukt. Abstamm.-u. Vererb.-Lehre88, 619 (1957).Google Scholar
  2. Avanzi, S.: Chromosome breakage by pyrrolizidine alkaloids and modification of the effect by cysteine. Caryologia14, 251 (1961).Google Scholar
  3. Clark, A. M.: Mutagenic activity of the alkaloid heliotrine inDrosophila. Nature (Lond.)183, 731 (1959).Google Scholar
  4. Culvenor, C. C., A. T. Dann andA. T. Dick: Alkylation as the mechanism by which the hepatotoxic pyrrolizidine alkaloids act on cell nuclei. Nature (Lond.)195, 570 (1962).Google Scholar
  5. Kihlman, B. A.: Oxygen and the production of chromosome aberrations by chemicals and X-rays. Hereditas (Lund.)41, 384 (1955).Google Scholar
  6. —: Biochemical aspects of chromosome breakage. Advant. Genet.10, 1 (1961).Google Scholar
  7. Read, J.: Radiation biology ofVicia faba in relation to the general problem, p. 174. Oxford: Blackwell Scientific Publications 1959.Google Scholar
  8. Schneiderman, H. A., M. Ketchel andC. M. Williams: The physiology of insect diapause. VI. Effects of temperature, oxygen tension, and metabolic inhibitors onin vitro spermatogenesis in theCecropia silkworm. Biol. Bull.105, 188 (1953).Google Scholar
  9. Sobels, F. H.: The influence of catalase inhibitors on the rate of X-ray induced mutations inDrosophila melanogaster. Proc. 1st. int. Photobiol. Congr. Amsterdam 1954, p. 332.Google Scholar
  10. Sobels, F. H.: Dose rate, cyanide and some other factors influencing repair of mutational damage inDrosophila. Abh. dtsch. Akad. Wiss. Berl. Nr 1. Kl. Med., 115 (1962).Google Scholar
  11. Swanson, G. P., andT. Merz: Factors influencing the effect of β-propiolactone on chromosomes ofVicia faba. Science129, 1364 (1959).Google Scholar
  12. Wolff, S., andH. E. Luippold: Metabolism and chromosome break rejoining. Science122, 231 (1955).Google Scholar
  13. Yanders, A. F.: Relative time of eclosion ofDrosophila females heterozygous for sex-linked recessive lethals. Amer. Naturalist92, 189 (1958).Google Scholar

Copyright information

© Springer-Verlag 1963

Authors and Affiliations

  • N. G. Brink
    • 1
  1. 1.Department of ZoologyUniversity of TasmaniaTasmania(Australien)

Personalised recommendations