Advertisement

Soviet Physics Journal

, Volume 24, Issue 10, pp 919–923 | Cite as

Thermoelectric properties of Ag2Se

  • M. G. Ramazanzade
  • S. A. Aliev
  • N. A. Berdieva
  • A. M. Agaev
Article

Abstract

To obtain information on the temperature and concentration dependence of thermoelectric quality factor Z and to clarify the nature of scattering in Ag2Se a study was made of electrical conductivity σ, thermo-emf α, and thermal conductivity ϰ in silver selenide over the temperature range T=80–450°K at concentration levels of 2–43·1024 m−3. It is shown that in Ag2Se the Lorentz number L, determined experimentally from the electronic fraction of the thermal conductivity, is less than the Sommerfeld number Lo. Calculation of L/Lo(n) performed with a theory considering inelastic scattering of carriers, shows that the inelasticity is produced by electron interaction. Comparison of experimental data on the temperature dependence of lattice thermal conductivity with theory permits the conclusion that in Ag2Se in range 80–300°K the basic role in phonon scattering is played by three-phonon Umklapp processes. It is shown that with increase in T and decrease in n the thermoelectric quality factor of silver selenide increases. The highest value of Z was achieved in a specimen with electron concentration n=2·1024 m−3 at T=320°K. The rapid decrease in Z upon phase transition is related to discontinuous decrease in α and σ at this point.

Keywords

Phase Transition Thermal Conductivity Electrical Conductivity Electron Concentration Concentration Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. B. Conn and Taylor, J. Electrochem. Soc.,107, No. 12, 977 (1960).Google Scholar
  2. 2.
    S. Miyatani and I. Toyota, J. Phys. Soc. Jpn.,23, No. 1, (July, 1967).Google Scholar
  3. 3.
    S. A. Aliev, N. A. Berdieva, and M. I. Aliev, Fiz. Tekh. Poluprovodn.,12, 10 (1978).Google Scholar
  4. 4.
    G. B. Abdullaev, M. I. Aliev, S. A. Aliev, and N. A. Berdieva, Preprint Fiz. Inst. Akad. Nauk Azerbaidzhen. SSR No. 33 (1974).Google Scholar
  5. 5.
    A. S. Epstein, J. Appl. Phys.,34, No. 12, 3587 (1963).Google Scholar
  6. 6.
    V. M. Askerov, Kinetic Effects in Semiconductors [in Russian], Nauka, Leningrad (1970).Google Scholar
  7. 7.
    T. A. Aliev, F. M. Gashim-Zade, S. A. Aliev, et al., Fiz. Tekh. Poluprovodn.,5, 329 (1971).Google Scholar
  8. 8.
    G. B. Abdullaev, M. I. Aliev, S. A. Aliev, D. G. Arasly, N. A. Verdieva, and R. E. Guseinov, Preprint Fiz. Inst. Akad. Nauk Azerbaidzhan, SSR No. 30 (1974).Google Scholar
  9. 9.
    I. A. Smirnov and V. I. Tamarchenko, Electronic Thermal Conductivity in Metals and Semiconductors [in Russian], Nauka (1977).Google Scholar
  10. 10.
    D. Drabl and G. Goldsmid, Thermal Conductivity of Semiconductors [in Russian], Moscow (1963).Google Scholar
  11. 11.
    S. A. Aliev and N. A. Verdieva, Uch. Zap. Azerb. SSR, Ser. Fiz. Mat. Nauk, No. 4 (1978).Google Scholar
  12. 12.
    Yu. I. Ravich, B. A. Efimova, and I. A. Smirnov, Methods of Semiconductor Study with Applications to Lead Chalcogenides PbTe,PbSe, and PbS [in Russian], Nauka, Moscow (1968).Google Scholar
  13. 13.
    S. A. Aliev, U. Kh. Suyunov, and M. I. Aliev, Fiz. Tekh. Poluprovodn., No. 6, 777 (1972).Google Scholar
  14. 14.
    S. A. Aliev, U. Kh. Suyunov, and M. I. Aliev, Fiz. Tekh. Poluprovodn., No. 7, 2024 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • M. G. Ramazanzade
    • 1
  • S. A. Aliev
    • 1
  • N. A. Berdieva
    • 1
  • A. M. Agaev
    • 1
  1. 1.M. Azizbekov Azerbaidzhan Institute of Petroleum and ChemistryUSSR

Personalised recommendations