Zeitschrift für Vererbungslehre

, Volume 97, Issue 2, pp 102–110 | Cite as

Dark- and K-reactivation in UV irradiatedEscherichia coli

  • H. Kneser


UV survival of E. coli strains with different sensitivities has been measured under several post-irradiation conditions, which have been found to influence only the efficiency of two known reactivation mechanisms.

Strains BB, B and Bs-1 (equivalent to fil+ and probably lon) cannot use a reactivation mechanism which is active in K 12 (K-reactivation). Only a regulatory component is lacking, which can be substituted for by pantoyl lactone or heat treatment. B or BB cells in the growing state perform incomplete dark-reactivation; liquid holding or growth to the stationary phase restore it. K-reactivation also allows completion of darkreactivation.


Heat Treatment Stationary Phase Reactivation Mechanism Lactone Regulatory Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, H. I., andM. Engel: Factors influencing the survival of bacteria after exposure to ionizing radiation. J. cell. comp. Physiol.58, Suppl., 95–105 (1961).Google Scholar
  2. —, andA. A. Hardigree: Analysis of a gene controlling cell division and sensitivity to radiation inE. coli. J. Bact.87, 720–726 (1964).Google Scholar
  3. Alper, T., andN. E. Gillies: The relationship between growth and survival after irradiation ofEscherichia coli strain B and two resistant mutants. J. gen. Microbiol.22, 113–128 (1960).Google Scholar
  4. Arber, W., u.C. Lataste-Dorolle: Erweiterung des Wirtsbereiches des Bakteriophagen λ aufEscherichia coli B. Path. et Microbiol. (Basel)24, 1012–1018 (1961).Google Scholar
  5. Boyce, R. P., andP. Howard-Flanders: Release of ultraviolet light-induced thymine dimers from DNA inE. coli K12. Proc. nat. Acad. Sci. (Wash.)51, 293–300 (1964).Google Scholar
  6. Clark, A. J., andA. D. Margulies: Isolation and characterization of recombination-deficient mutants ofEscherichia coli K12. Proc. nat. Acad. Sci. (Wash.)53, 451–459 (1965).Google Scholar
  7. Demerec, M., andR. Latarjet: Mutations in bacteria induced by radiations. Cold Spr. Harb. Symp. quant. Biol.11, 38–50 (1946).Google Scholar
  8. Garen, A., andN. D. Zinder: Radiological evidence for partial genetic homology between bacteriophage and host bacteria. Virology1, 347–376 (1955).Google Scholar
  9. Harm, W.: On the relationship between host-cell reactivation and UV-reactivation in UV-inactivated phages. Z. Vererbungsl.94, 67–79 (1963).Google Scholar
  10. —, andW. Stein: Vergleich der UV-Inaktivierung und Wärmeaktivierung von verschieden UV-empfindlichen Coli-Kulturen. Naturwissenschaften39, 212–213 (1952).Google Scholar
  11. Hill, R. F., andE. Simson: A study of radiosensitive and radioresistent mutants ofEscherichia coli strain B. J. gen. Microbiol.24, 1–14 (1964).Google Scholar
  12. Howard-Flanders, P., E. Simson, andL. Theriot: The exicision of thymine dimers from DNA, filament formation and sensitivity to ultraviolet light inEscherichia coli K 12. Mut. Res.1, 219–226 (1964a).Google Scholar
  13. ———: A locus that controls filament formation and sensitivity to radiation inEscherichia coli K 12. Genetics49, 237–246 (1964b).Google Scholar
  14. Jacob, F., andE. Wollman: Sexuality and the genetics of bacteria. New York and London: Academic Press 1961.Google Scholar
  15. Jagger, J., W. C. Wise, andR. S. Stafford: Delay in growth and division induced by near UV radiation inE. coli B and its role in photoprotection and liquid holding recovery. Photochem. Photobiol.3, 11–24 (1964).Google Scholar
  16. Kaudewitz, F.: Inaktivierende und mutagene Wirkung salpetriger Säure auf Zellen vonEscherichia coli. Z. Naturforsch.14b, 528–537 (1959).Google Scholar
  17. Kneser, H.: Repair of UV lesions and induction of λ-prophage, Virology (in press) (1966).Google Scholar
  18. —,K. Metzger, andW. Sauerbier: Evidence of different mechanisms for UV reactivaton and “ordinary host cell reactivation” of phage λ. Virology27, 213–221 (1965).Google Scholar
  19. Pettijohn, D., andP. Hanawalt: Evidence for replication of ultraviolet damaged DNA in bacteria. J. molec. Biol.9, 395–410 (1964).Google Scholar
  20. Reich, E., A. J. Shatkin, andE. L. Tatum: Bacteriocidal action of mitomycin C. Biochim. biophys. Acta (Amst.)53, 132–149 (1961).Google Scholar
  21. Roberts, R. B., andE. Aldous: Recovery from ultraviolet irradiation inEscherichia coli. J. Bact.57, 363–375 (1949).Google Scholar
  22. Rörsch, A., A. Edelman, C. van der Kamp, andJ. A. Cohen: Phenotypic and genotypic characterization of radiation sensitivity inEscherichia coli B. Biochim. biophys. Acta (Amst.)61, 278–289 (1962).Google Scholar
  23. Sauerbier, W.: The bacterial mechanism reactivating UV irradiated phage in the dark. Z. Vererbungsl.93, 220–228 (1962a).Google Scholar
  24. —: Evidence for a nonrecombinational mechanism of host cell reactivation of phage. Virology16, 398–404 (1962b).Google Scholar
  25. Setlow, R. B., andW. L. Carrier: The disappearance of thymine dimers from DNA: An error correcting mechanism. Proc. nat. Acad. Sci. (Wash.)51, 226–231 (1964).Google Scholar
  26. Stein, W., andI. Meutzner: Reaktivierung von UV-inaktivierten Bacterium coli durch Wärme. Naturwissenschaften37, 167–168 (1950).Google Scholar
  27. Van de Putte, P., C. Westenbroek, andA. Rörsch: The relationship between genecontrolled radiation resistance and filament formation inEscherichia coli. Biochim. biophys. Acta (Amst.)76, 247–256 (1963).Google Scholar
  28. Witkin, E. M.: In: Repair from genetic radiation damage (ed.F. H. Sobels). Oxford, London, New York and Paris: Pergamon Press 1963.Google Scholar
  29. —: Photoreversal and “dark repair” of mutations to prototrophy induced by UV light in photoreactivable and non-photoreactivable strains ofEscherichia coli. Mut. Res.1, 22–36 (1964).Google Scholar
  30. Wulff, D. L.: The role of thymine dimer in the photo-inactivation of the bacteriophage T4v1. J. molec. Biol.7, 431–441 (1963).Google Scholar
  31. Zampieri, A., andJ. Greenberg: Effect of heat and plating medium on survival ofEscherichia coli after treatment with radiomimetic chemicals. J. Bact.89, 931–936 (1965).Google Scholar
  32. Zelle, M. R., andA. Hollaender: In: Radiation biology (ed.A. Hollaender), vol. II, p. 365. New York, Toronto and London: McGraw-Hill Book Co. 1954.Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • H. Kneser
    • 1
  1. 1.Institut für Genetik der Universität zu Köln5 Köln-LindenthalGermany

Personalised recommendations