Abstract
Fitting trend and error covariance structure iteratively leads to bias in the estimated error variogram. Use of generalized increments overcomes this bias. Certain generalized increments yield difference equations in the variogram which permit graphical checking of the model. These equations extend to the case where errors are intrinsic random functions of order k, k=1, 2, ..., and an unbiased nonparametric graphical approach for investigating the generalized covariance function is developed. Hence, parametric models for the generalized covariance produced by BLUEPACK-3D or other methods may be assessed. Methods are illustrated on a set of coal ash data and a set of soil pH data.
Similar content being viewed by others
References
Box, G. E. P. and Jenkins, G. M., 1970, Time Series Analysis: Forecasting and Control: Holden Day, San Francisco, 533 p.
Chauvet, P., 1984, Analyse Structurale Directe d'une FAI-k à une Dimension: Science de la Terre, Ser. Inf., No. 21, p.
Chirlin, G. R. and Wood, E. F., 1982, On the Relationship Between Kriging and State Estimation: Water Resour. Res., v. 18, p. 432–438.
Chua, S-H. and Bras, R. L., 1982, Optimal Estimators of Mean Areal Precipitation in Regions of Orographic Influence: J. Hydrol., v. 57, p. 23–48.
Cressie, Noel, 1984, Towards Resistant Geostatistics:in G. Verly, et al. (Eds) Geostatistics for Natural Resources Characterization, Reidel, Dordrecht, Holland.
Cressie, Noel, 1985, Fitting Variogram Models by Weighted Least Squares: Math. Geol. v. 17, p. 563–586.
Cressie, Noel, 1986, Kriging Nonstationary Data: J. Amer. Stat. Assoc., v. 81, p. 625–634.
Cressie, Noel and Glonek, G., 1984, Median Based Covariogram Estimators Reduce Bias: Stat. Prob. Lett., v. 2, p. 299–304.
Cressie, Noel and Hawkins, Dougles M., 1980, Robust Estimation of the Variogram, I: Math. Geol., v. 12, p. 115–125.
Cressie, Noel, and Laslett, G. M., 1986, In Search of Generalized Covariances for Kriging: Unpublished manuscript.
Delfiner, P., 1976, Linear Estimation of Non-Stationary Spatial Phenomena,In M. Guarascio, et al. (Eds.) Advanced Geostatistics in the Mining Industry, Reidel, Dordrecht, p. 49–68. (An expanded version, The Intrinsic Model of Order k, is available from the Centre de Géostatistique, Ecole des Mines, Fontainebleau, France, 49 p.)
Delfiner, P.; Renard, D.; and Chiles, J. P., 1978, BLUEPACK-3D Manual: Centre de Géostatistique, Ecole des Mines, Fontainebleau, France.
Gandin, L. S., 1963, Objective Analysis of Meterological Fields: GIMIZ, Leningrad (Israel program for scientific translations, Jerusalem, 1965), 238 p.
Gomez, M. and Hazen, K., 1970, Evaluating Sulfur and Ash Distribution in Coal Seams by Statistical Response Surface Regression Analysis: U.S. Bureau of Mines Report, RI 7377, 120 p.
Graybill, F. A., 1969, Introduction to Matrices with Applications in Statistics: Wadsworth Publishing Co., Belmont, California, 372 p.
Gel'fand, I. M. and Vilenkin, N. Y., 1964, Generalized Functions: Applications of Harmonic Analysis, v. 4: Academic Press, New York, 384 p.
Kitanidis, P. K., 1983, Statistical Estimation of Polynomial Generalized Covariance Functions and Hydologic Applications. Water Resources Research, v. 19, p. 909–921.
Laslett, G. M.; McBratney, A. B.; Pahl, P. J.; and Hutchinson, M. F., (submitted), Comparison of Several Spatial Prediction Methods for Soil pH: Soil Science.
Matheron, G., 1963, Principles of Geostatistics: Economic Geology, v. 58, p. 1246–1266.
Matheron, G., 1969, Le Krigeage Universel, Cahiers du Centre de Morphologie Mathematique, No. 1: Ecole des Mines, Fontainbleau, France.
Matheron, G., 1971, The Theory of Regionalized Variables and Its Applications, Cahiers du Centre de Morphologie Mathematique, No. 5: Ecole des Mines, Fontainbleau, France, 211 p.
Matheron, G., 1973, The Intrinsic Random Functions and Their Applications: Adv. Appl. Prob., v. 5, p. 439–468.
Neuman, S. P., 1980, A Statistical Approach to the Inverse of Aquifer Hydrology: Water Resources Research, v. 16, 331–346.
Neuman, S. P. and Jacobson, E. A., 1984, Analysis of Nonintrinsic Spatial Variability by Residual Kriging with Application to Regional Groundwater Levels: Math. Geol., v. 16, p. 499–421.
Starks, T. H. and Fang, J. H., 1982, On the Estimation of the Generalized Covariance Function: Math. Geol., v. 14, p. 57–64.
Vieira, S. R.; Nielsen, D. R.; and Biggar, J. W., 1981, Spatial Variability of Field Measured Infiltration Rate: Soil Sci. Soc. Amer. J., v. 45, p. 1040–1048.
Wahba, G. and Wendelberger, J., 1980, Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross-Validation: Month. Weath. Rev., v. 108, p. 1122–1143.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cressie, N. A nonparametric view of generalized covariances for kriging. Math Geol 19, 425–449 (1987). https://doi.org/10.1007/BF00897194
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00897194