Advertisement

Soviet Physics Journal

, Volume 20, Issue 9, pp 1204–1208 | Cite as

An integral equation for the average radiation intensity in a stochastically macroinhomogeneous

Medium formulation and Monte Carlo solution
  • G. N. Glazov
  • G. A. Titov
Article

Abstract

An integral equation for the average intensity is derived for a simplified model of a stochastic macroinhomogeneous medium in the form of a stochastic field of attenuation and scattering co-efficients. This equation can be solved by the Monte Carlo method. A simulation algorithm is developed, maximally approximating the well-known algorithm for a deterministic medium. As an example, the algorithm is used to calculate the flux of solar radiation transmitted through a cloud layer.

Keywords

Radiation Attenuation Integral Equation Solar Radiation Monte Carlo Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading (1967).Google Scholar
  2. 2.
    G. B. Rybicki, Transfer of Radiation in Stochastic Media, Smithsonian Inst. Astrophys. Observ. Spec. Rep. No. 180 (1965).Google Scholar
  3. 3.
    Yu.-A. R. Mullamaa (editor), Stochastic Structure of Cloudiness and Radiation Fields [in Russian], Tartu (1972).Google Scholar
  4. 4.
    G. M. Vainikko, in: Statistical Studies of Intermittent Cloudiness (Meteorological Studies, No. 21) [in Russian] (1973), p. 28.Google Scholar
  5. 5.
    G. M. Vainikko, in: Statistical Studies of Intermittent Cloudiness (Meteorological Studies, No. 21) [in Russian] (1973), pp. 38–51.Google Scholar
  6. 6.
    G. M. Vainikko, in: Statistical Studies of Intermittent Cloudiness (Meteorological Studies, No. 21) [in Russian] (1973), pp. 65–76.Google Scholar
  7. 7.
    G. N. Glazov and G. A. Titov, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, No. 9 (1976).Google Scholar
  8. 8.
    S. Chandrasekhar, Radiative Transfer, Clarendon, Oxford (1950); Dover, New York (1960).Google Scholar
  9. 9.
    G. N. Glazov and G. A. Titov, in: Aspects of Laser Probing of the Atmosphere [in Russian], Nauka, Novosibirsk (1976), p. 126.Google Scholar
  10. 10.
    G. N. Glazov and G. A. Titov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9 (1975).Google Scholar
  11. 11.
    G. A. Mikhailov, Problems in the Theory of Monte Carlo Methods [in Russian], Nauka, Novosibirsk (1974).Google Scholar
  12. 12.
    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, et al., The Monte Carlo Method in Atmospheric Optics [In Russian], Nauka, Novosibirsk (1974).Google Scholar
  13. 13.
    D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions, Elsevier, New York (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • G. N. Glazov
    • 1
  • G. A. Titov
    • 1
  1. 1.Institute of Atmospheric Optics, Siberian BranchAcademy of Sciences of the USSRUSSR

Personalised recommendations