The moon and the planets

, Volume 24, Issue 3, pp 291–318 | Cite as

Investigation of some of the principal geometric effects on planetary polarization

  • Kiyoshi Kawabata
Article

Abstract

Three major geometric factors which are likely to influence theoretical interpretation of planetary polarization measurements, viz., observer—planet distance, horizontal inhomogeneity of planetary disk, and deviation from a spherical body, are investigated.

The distance effect is examined for regional as well as global polarizations. For convenience of analysis, the expressions for zenith and azimuth angles of incident and emergent light appropriate for a snap-shot observation are derived as explicit functions of distance between observer and planet. Sample computations for Venus indicate that regional polarization near the planetary limb is significantly affected by the observer's distance. This effect should be particularly noticeable when an observation is made at a phase angle around which the single scattering polarization of atmospheric scattering agents exhibits a steep variation. The global polarization at large phase angles (measured at disk-center) is gradually moved toward smaller phase angles, as the observer approaches the planet. Any narrow polarization features such as rainbow and glory at small phase angles are heavily smoothed out.

The effects of horizontal inhomogeneity are investigated with a planetary disk having highly polarizing regions at high latitudes. Comparison of theoretical global polarization computed for such a disk with the Pioneer Venus OCPP measurements shows a possible change in cloud-haze stratification approximately at 50° latitude, consistent with other imaging observations. An approximate analytical representation of residual polarization at zero phase angle is then derived to compare to the numerical results for Venus. An attempt is also made to explain the relatively large magnitude of residual polarization observed on Jupiter.

Finally, to study the effects of nonsphericity of planetary body, the global polarizations are computed for a spheroidal planet. The global polarization tends to increase as the planet's oblateness increases. However, for Jupiter and Saturn, such effect may be of secondary importance.

Keywords

Phase Angle Azimuth Angle Single Scattering Planetary Body Residual Polarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axel, L.: 1972,Astropys. J. 173, 451.Google Scholar
  2. Baker, A. L., Baker, L. R., Beshore, E., Blenman, C., Castillo, N. D., Chen, Y. P., Coffeen, D. L., Doose, L. R., Elston, J. P., Fountain, J. W., Gehrels, T., Kendall, J. H., KenKnight C. E., Norden, R. A., Swindell, W., and Tomasko, M. G.: 1975,Science 188, 468.Google Scholar
  3. Bugaenko, O. I., Morozhenko, A. V., and Yanovitskii, E. G.: 1974, in T. Gehrels (ed.),Planets, Stars and Nebulae studied with Photopolarimetry, pp. 599–606, Univ. of Arizona Press, Tucson.Google Scholar
  4. Chandrasekhar, S.: 1960,Radiative Transfer, Dover Publications, Inc. New York.Google Scholar
  5. Coffeen, D. L.: 1969,Astron. J. 74, 446.Google Scholar
  6. Coffeen, D. L.: 1974,J. Geophys. Res. 79, 3645.Google Scholar
  7. Coffeen, D. L.: 1979,J. Opt. Soc. Am. 69, 1051.Google Scholar
  8. Coffeen, D. L. and Hansen, J. E.: 1974, in T. Gehrels (ed.),Planets, Stars and Nebulae studied with Photopolarimetry, pp. 518–581. Univ. of Arizona Press, Tucson.Google Scholar
  9. Cochran, W. D.: 1977,Icarus 31, 325.Google Scholar
  10. Cochran, W. D. and Cochran, A. L.: 1979,Icarus 42, 102.Google Scholar
  11. Cochran, W. D. and Slavsky, D. B.: 1979,Icarus 37, 84.Google Scholar
  12. Deuze, J. L.: 1974, Thesis, 3rd level, Lille.Google Scholar
  13. Dollfus, A.: 1957, Suppl. Ann. Astrophys.,4, 114 pp. (available in English as NASA TT F-188).Google Scholar
  14. Dollfus, A., Auriére, M., and Santer, R.: 1979,Astron. J. 84, 1419.Google Scholar
  15. Gehrels, T., Baker, L. R., Beshore, E., Blenman, C., Burke, J. J., Castillo, N. D., DaCosta, B., Degewij, J., Doose, L. R., Fountain, J. W., Gotobed, J., KenKnight, C. E., McMillan, R., Murphy, R., Smith, P. H., Stoll, C. P., Strickland, R. N., Tomasko, M. G., Wijesinghe, M. P., Coffeen, D. L., and and Esposito, L.: 1980,Science 207, 434.Google Scholar
  16. Gehrels, T., Coffeen, D., Tomasko, M., Doose, L., Swindell, W., Castillo, N., Kendall, J., Clements, A., Hämeen-Anttila, J., KenKnight, C., Blenman, C., Baker, R., Best, G., and Baker, L.: 1974,Science 183, 318.Google Scholar
  17. Gehrels, T., Herman, B. M., and Owen, T.: 1969,Astron. J. 74, 190.Google Scholar
  18. Gehrels, T. and Teska, T. M.: 1963,Appl. Opt. 2, 67.Google Scholar
  19. Hall, J. S. and Riley, L. A.: 1969,J. Atmos. Sci. 26, 920.Google Scholar
  20. Hall, J. S. and Riley, L. A.: 1974,Icarus 23, 144.Google Scholar
  21. Hansen, J. E. and Arking, A.: 1971,Science 171, 669.Google Scholar
  22. Hansen, J. E. and Hovenier, J. W.: 1974,J. Atmos. Sci. 31, 1137.Google Scholar
  23. Hansen, J. E. and Travis, L. D.: 1974a,Space Sci. Rev. 16, 527.Google Scholar
  24. Hansen, J. E. and Travis, L. D.: 1974b,NASA Inst. for Space Studies Report, NASA, New York.Google Scholar
  25. Horák, H. G.: 1950,Astrophys. J. 112, 445.Google Scholar
  26. Hord, C. W., West, R. A., Simmons, K. E., Coffeen, D. L., Sato, M., Lane, A. L., and Bergstralh, J. T.: 1979,Science 206, 956.Google Scholar
  27. Hunt, G. E. and Bergstralh, J. T.: 1977,Icarus 30, 511.Google Scholar
  28. Kawabata, K.: 1980,Astrophys. Space Sci. 69, 189.Google Scholar
  29. Kawabata, K., Coffeen, D. L., Hansen, J. E., Lane, W. A., Makoto Sato, and travis, L. D.: 1980, To appear inJ. Geophys. Res. special issue dedicated to Pioneer Venus Mission.Google Scholar
  30. Kawabata, K. and Hansen, J. E.: 1975a,J. Atmos. Sci. 32, 1133.Google Scholar
  31. Kawabata, K. and Hansen, J. E.: 1975b,Bull. Am. Astron. Soc. 7, 382.Google Scholar
  32. Kawata, Y.: 1977,Icarus 33, 217.Google Scholar
  33. Lane, W. A.: 1979,Astron. J. 84, 683.Google Scholar
  34. Lyot, B.: 1929,Ann. Obs. Paris (Meudon) 8, 161 pp. (available in English as NASA TT F-187).Google Scholar
  35. Morozhenko, A. V. and Yanovitskii, E. G.: 1973,Icarus 18, 583.Google Scholar
  36. Mukai, S. and Mukai, T.: 1979,Icarus 38, 90.Google Scholar
  37. Murray, B. C., Belton, M. J. S., Danielson, G. E., Davies, M. E., Gault, D., Hapke, B., O'Leary, B., Strom, R. G., Suomi, V., and Trask, N.: 1974,Science 183, 1307.Google Scholar
  38. Rossow, W. B., DelGenio, A. D., Limaye, S. S., Travis, L. D., and Stone, P. H.: 1980. To appear inJ. Geophys. Res. Special issue devoted to Pioneer Venus Mission.Google Scholar
  39. Santer, R.: 1977, Thesis, 3rd level, Lille.Google Scholar
  40. Santer, R. and Dollfus, A.: 1980,Astron. J. 85, 751.Google Scholar
  41. Santer, R. and Herman, M.: 1979,Astron J. 84, 1802.Google Scholar
  42. Sato, M. and Hansen, J. E.: 1979,J. Atmos. Sci. 36, 1133.Google Scholar
  43. Sekera, Z. and Viezee, W.: 1961, RAND Rept. R-389-PR, Santa Monica, 55pp.Google Scholar
  44. Sill, G. T.: 1972,Comm. Lunar Planet. Lab., No. 171, 191.Google Scholar
  45. Smith, D. W., Green, T. F., and Shorthill, R. W.: 1977,Icarus 30, 697.Google Scholar
  46. Smoluchowski, R. S.: 1976, in T. Gehrels (ed.),Jupiter, pp. 3–21, Univ. of Arizona Press, Tucson.Google Scholar
  47. Sobolev, V. V.: 1975:Light Scattering in Planetary Atmospheres, Pergamon Press, New York, 256pp.Google Scholar
  48. Stoll, C. P.: 1980, Ph.D. Thesis, Univ. of Arizona.Google Scholar
  49. Stoll, C. and Tomasko, M. G.: 1979,Bull. Am. Astron. Soc. 11, 588.Google Scholar
  50. Stoll, C., Tomasko, M. G., and Coffeen, D. L.: 1978,Bull. Am. Astron. Soc. 10, 562.Google Scholar
  51. Tomasko, M. G.: 1976, in T. Gehrels (ed.),Jupiter, pp. 486–515, Univ. of Arizona Press, Tucson.Google Scholar
  52. Tomasko, M. G. and Martinek, S.: 1978,Bull. Amer. Astron. Soc. 10, 562.Google Scholar
  53. Tomasko, M. G., West, R. A., and Castillo, N. D.: 1978,Icarus 33, 552.Google Scholar
  54. Travis, L. D.: 1975,J. Atmos. Sci. 32, 1190.Google Scholar
  55. Travis, L. D., Coffeen, D. L., Hansen, J. E., Kawabata, K., Lacis, A. A., Lane, W. A., Limaye, S. S., and Stone, P. H.: 1979a,Science 203, 781.Google Scholar
  56. Travis, L. D., Coffeen, D. L., DelGenio, A. D., Hansen, J. E., Kawabata, K., Lacis, A. A., Lane, W. A., Limaye, S. S., Rossow, W. B., and Stone, P. H.: 1979b,Science 205, 74.Google Scholar
  57. West, R. A.: 1979,Icarus 38, 34.Google Scholar
  58. West, R. A., Hord, C. W., Simmons, K. E., Coffeen, D. L., Sato, M., and Lane, A. L.: 1980,J. Geophys. Res., in press.Google Scholar
  59. West, R. A. and Tomasko, M. G.: 1980,Icarus 41, 278.Google Scholar
  60. Whitehill, L. P.: 1972, Ph.D. Thesis, Cornell Univ.Google Scholar
  61. Woodman, J. H.: 1976, Ph.D. Thesis, Univ. of Texas.Google Scholar
  62. Woodman, J. H., Cochran, W. D., and Slavsky, d. B.: 1979,Icarus 37, 73.Google Scholar
  63. Young, A. T.: 1973,Icarus 18, 564.Google Scholar

Copyright information

© D. Reidel Publishing Co. 1981

Authors and Affiliations

  • Kiyoshi Kawabata
    • 1
  1. 1.Goddard Space Flight CenterNASA Goddard Institute for Space StudiesNew YorkUSA

Personalised recommendations