Advertisement

Soviet Physics Journal

, Volume 34, Issue 9, pp 794–797 | Cite as

Black holes in multidimensional theory with Ricci plane internal spaces

  • V. D. Ivashchuk
  • V. N. Mel'nikov
  • S. B. Fadeev
Elementary Particle Physics and Field Theory
  • 13 Downloads

Abstract

A generalization of the solution of Tangherlini [1] to the case of internal Ricci plane spaces is obtained. It is shown that a horizon exists in the (2 + d)-dimensional section only in the trivial case where the scale factors of the internal spaces are constant. The p-adic analog of the solution is considered.

Keywords

Black Hole Internal Space Trivial Case Plane Space Dimensional Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    F. R. Tangherlini, Nuovo Cimento,27, 636 (1963).Google Scholar
  2. 2.
    K. A. Bronnikov, V. D. Ivashchuk, and V. N. Mel'nikov, Reports at the Seventh Soviet Conference on Gravity [in Russian], Yerevan State University (1989), p. 70.Google Scholar
  3. 3.
    S. B. Fadeev, V. D. Ivashchuk, and V. N. Mel'nikov [Melnikov], Proc. of Erice Workshop on Cosmological Constants (to be published in 1991).Google Scholar
  4. 4.
    N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer, New York (1977).Google Scholar
  5. 5.
    R. C. Myers, Phys. Rev. D,35, No. 2, 455 (1987).Google Scholar
  6. 6.
    K. A. Bronnikov and V. D. Ivashchuk, Reports at the Seventh Soviet Conference on Gravity [in Russian], Yerevan State University (1988), p. 156.Google Scholar
  7. 7.
    M. Yoshimura, Phys. Rev. D,34, No. 4, 1021 (1986).Google Scholar
  8. 8.
    I. V. Volovich, Class. Quantum Grav.,4, 183 (1987).Google Scholar
  9. 9.
    P. G. O. Freund and M. Olson, Phys. Lett.,199B, No. 2, 186 (1987).Google Scholar
  10. 10.
    I. Ya. Araf'eva, B. Dragovich, P. Frampton, and I. V. Volovich, Steklov Mathematical Institute Preprint (1990).Google Scholar
  11. 11.
    V. D. Ivashchuk, V. N. Mel'nikov, and S. B. Fadeev, All-Union School on Gravitation and Gauge Theories [in Russian], Yakutsk (1990).Google Scholar
  12. 12.
    K. Mahler, Introduction to p-adic Numbers and Their Functions, Cambridge University Press (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. D. Ivashchuk
    • 1
  • V. N. Mel'nikov
    • 1
  • S. B. Fadeev
    • 1
  1. 1.VNITsPVUSSR

Personalised recommendations