Soviet Physics Journal

, Volume 31, Issue 1, pp 1–4 | Cite as

Dielectric properties of (K, Li)TaO3 crystals at superhigh frequencies

  • G. V. Belokopytov
  • I. V. Ivanov
  • M. E. Reshetnikov
  • N. N. Strepetova
  • I. Yu. Syromyatnikov
  • M. V. Kharina
Physics of Semiconductors and Dielectrics
  • 21 Downloads

Abstract

The dielectric-resonator method was used to study the dielectric constant and loss of K1−xLixTaO3 crystals for lithium contents x=0.02, 0.05, and 0.1 in the frequency of 0.5 GHz (in the temperature interval from 4.2 to 300 K) the dielectric constant, the static nonlinearity, and the dynamic nonlinearity were studied, the dielectric properties of K1−xLixTaO3 are determined simultaneously by the relaxation of impurity ions and by the soft mode, but at helium temperatures the contribution of the soft mode toɛ predominates. The addition of lithium leads to a reduction ofɛ at 4.2 K and to a lessening of the steepness of theɛ (t) curve. KTaO3 crystals alloyed with lithium exhibited exceptionally low losses at helium temperatures (at 4.2 K in the range 12–14 GHz, tan γ=2 · 10−5 for x=0.1). With a rise in temperature the loss increased just as in the case of unalloyed KTaO3, but less steeply. Measurements of crystals with x=0.1 revealed considerable dispersion of the nonlinearity: the coefficient of static nonlinearity was an order of magnitude of magnitude higher than the coefficient of dynamic nonlinearityα1dyn, which was determined according to the efficiency of generation of the second harmonic.

Keywords

Lithium Helium Dielectric Constant Dielectric Property Dynamic Nonlinearity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    U. T. Höchly, H. E. Weibel, and L. A. Boatner, Phys. Rev. Lett.,41, 1410 (1978).Google Scholar
  2. 2.
    Yu. M. Poplavko, V. P. Bovtun, and I. N. Geifman, Izv. Akad. Nauk SSSR, Ser. Fiz.,45, 648 (1983).Google Scholar
  3. 3.
    G. A. Smolenskii, A. V. Sotnikov, et al., Pis'ma Zh. Éksp. Teor. Fiz.,37, 30 (1983).Google Scholar
  4. 4.
    I. M. Buzin, Vestn. Mosk. Univ., Ser. Fiz., Astron.,18, No. 6, 70 (1977).Google Scholar
  5. 5.
    E. S. Sabisky and H. J. Gerritsen, J. Appl. Phys.,33, 1450 (1962).Google Scholar
  6. 6.
    I. V. Ivanov and N. A. Morozov, Fiz. Tverd. Tela,8, 3218 (1966).Google Scholar
  7. 7.
    G. V. Belokopytov, I. V. Ivanov, et al., Fiz. Tverd. Tela,24, 1865 (1982).Google Scholar
  8. 8.
    G. V. Belokopytov, I. V. Ivanov, N. N. Strepetova, and V. F. Chuprakov, Synopsis of Tenth All-Union Conference on Ferroelectricity [in Russian], Minsk (1982), Part 2, p. 42.Google Scholar
  9. 9.
    A. S. Sonin and A. I. Vasilevskaya, Electrooptical Crystals [in Russian], Moscow (1971).Google Scholar
  10. 10.
    Yu. I. Sirotin and M. P. Shaskol'skaya, The Fundamentals of Crystallography [in Russian], Moscow (1979).Google Scholar
  11. 11.
    G. V. Belokopytov, I. M. Buzin, et al., Fiz. Tverd. Tela,23, 141 (1981).Google Scholar
  12. 12.
    B. E. Vugmeister and M. D. Glinchuk, Izv. Akad. Nauk SSSR, Ser. Fiz.,47, 582 (1983).Google Scholar
  13. 13.
    Y. Yacoby et al., Solid St. Comm.,45, No. 8, 756 (1983).Google Scholar
  14. 14.
    R. C. Miller, Appl. Phys. Lett., 5, No. 1, 17 (1961).Google Scholar
  15. 15.
    M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford Univ. Press, NJ, (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • G. V. Belokopytov
    • 1
  • I. V. Ivanov
    • 1
  • M. E. Reshetnikov
    • 1
  • N. N. Strepetova
    • 1
  • I. Yu. Syromyatnikov
    • 1
  • M. V. Kharina
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations