Advertisement

Soviet Physics Journal

, Volume 26, Issue 10, pp 952–963 | Cite as

Defects in Schottky barrier structures

  • A. P. Vyatkin
  • N. K. Maksimova
Article

Conclusion

The progress achieved in recent years in study of the element and phase composition, as well as the energy spectrum of electron states on semiconductor boundaries with metals and dielectrics, has shown the complexity and multifaceted nature of the physicochemical reactions-occurring on these boundaries. In the present review we have attemped to consider the question of the physical interrelationship between the phenomena of interdiffusion of elements and formation of intermetallic compounds, and the electrophysical properties of metalsemiconductor contacts. Analysis of the results of theoretical and experimental studies permits the conclusion that an important role in both potential barrier formation and charge carrier transmission is played by structural defects developed during these reactions in the contact region of the semiconductor.

After chemical processing and deposition of metallic coatings stoichiometric composition defects are formed. Vacancies, antistructural defects, and defect complexes form surface electron states which together with intrinsic states ensure stabilization of the Fermi level on semiconductor boundaries with metals.

In many cases structural defects are the vehicle by which physicoehemical interactions in thin film metal-semiconductor contacts affect the electrical parameters of devices and their stability. The initial stage of degradation, as a rule, is the appearance of excess currents in the forward branch of the CVC at temperatures of 150-77°K. Study of the physical nature of excess currents shows that their appearance is related to generation of structural defects during thermal processing, or mechanical or electrical testing of specimens. The defects create a system of inhomogeneously distributed deep centers in the space-charge region. The most probable mechanism for charge carrier transmission with participation of deep levels is resonant tunneling.

Thus, to solve problems related to increasing reliability of Schottky barrier devices special attention should be given to conditions under which defects develop in the active region of the semiconductor diode and methods for eliminating these defects. Creation of conditions during device preparation favorable to formation of stable intermetallic compounds in the transition layer, maintenance of stoichiometric composition in the semiconductor, and inhibition of diffusion of electrically active metals, together with selection of barrier producing materials and protective coatings providing minimum mechanical stress in the contact will insure development of Schottky barrier devices having electrical parameters which are stable over a wide temperature range.

Keywords

Intermetallic Compound Schottky Barrier Stoichiometric Composition Resonant Tunneling Deep Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. I. Strikha, Theoretical Fundamentals of Metal-Semiconductor Contact Operation [in Russian], Naukova Dumka, Kiev (1974).Google Scholar
  2. 2.
    V. I. Strikha, Semiconductor Technology and Microelectronics [in Russian], Vol. 27, Naukova Dumka, Kiev (1978), p. 3.Google Scholar
  3. 3.
    S. M. Zi, Semiconductor Device Physics [in Russian], Énergiya, Moscow (1973).Google Scholar
  4. 4.
    É. Kh. Roderik, Metal-Semiconductor Contacts [in Russian], Radio Svyaz', Moscow (1982).Google Scholar
  5. 5.
    A. P. Vyatkin, N. K. Maksimova, V. E. Stepanov, and V. A. Chaldyshev, Semiconductor Technology and Microelectronics [in Russian], Vol. 27, Naukova Dumka, Kiev (1978), p. 21.Google Scholar
  6. 6.
    A. Sanderni (ed.), Methods of Surface Study [Russian translation], Mir, Moscow (1979).Google Scholar
  7. 7.
    V. G. Cherepin, The Ion Probe [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  8. 8.
    V. V. Korablev, Itogi Nauki Tekh., Ser. Elektron. Primen.,12, No. 3 (1980).Google Scholar
  9. 9.
    T. Karlsen, Photoelectron and Auget Spectroscopy [in Russian], Mashinostroenie, Leningrad (1981).Google Scholar
  10. 10.
    S. G. Konnikov and A. F. Sidorov, Electronic Probe Study of Semiconductor Materials and Devices [in Russian], Energiya, Leningrad (1978).Google Scholar
  11. 11.
    Thin Films. Mutual Diffusion and Reactions [Russian translation], J. Pote, K. Yu, and J. Meyer (eds.), Mir, Moscow (1982).Google Scholar
  12. 12.
    A. P. Vyatkin and N. K. Maksimova, in: Electronic Technology Materials, Part II, Science [in Russian], Sib. Otd. Akad. Nauk SSSR (1983), p. 29.Google Scholar
  13. 13.
    V. G. Bozhkov, K. V. Soldatenko, and A. A. Yatis, in: Semiconductor Devices with Schottky Barriers [in Russian], Naukova Dumka, Kiev (1979), p. 48.Google Scholar
  14. 14.
    W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. J. Lindau, Vac. Sci. Technol.,16, 1422 (1979).Google Scholar
  15. 15.
    R. H. Williams, J. Vac. Sci. Technol.,18, 929 (1981).Google Scholar
  16. 16.
    E. Calleja, J. Garrido, and J. Piqueras, J. Solid State Electron.,23, 591 (1980).Google Scholar
  17. 17.
    A. P. Vyatkin, in: Gallium Arsenide [in Russian], Tomsk. Gos. Univ., Tomsk (1969), p. 169.Google Scholar
  18. 18.
    A. Hiraki, S. Kim, W. Kammura, and M. Iwami, Surf. Sci.,86, 706 (1979); A. P. Vyatkin, A. V. Kozhevinov, V. I. Kravtsov, N. K. Maksimova, and V. I. Porogov, in: Summaries of Lectures and Reports of the III All-Union School on Physicoehemical Fundamentals of Raw Material Production for Electronic Technology [in Russian], Ulan-Udé (1981), p. 135.Google Scholar
  19. 19.
    L. G. Kositsyn, V. P. Yanovskii, N. P. Maksimova, G. K. Arbuzova, I. D. Romanova, and A. M. Minsk, Poverkhn. Fiz., Khim., Mekh., No. 9, 38 (1982).Google Scholar
  20. 20.
    A. P. Vyatkin, L. G. Kositsyn, N. K. Maksimova, A. M. Misik, and V. P. Yanovskii, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 7 (1981).Google Scholar
  21. 21.
    J. R. Waldrop, S. P. Kowalzyk, and R. W. Grant, J. Vac. Sci. Techno1.,21, 607 (1982).Google Scholar
  22. 22.
    V. G. Bozhkov, O. Yu. Malakhovskii, and A. M. Misik, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 97 (1983).Google Scholar
  23. 23.
    A. P. Vyatkin, N. K. Maksimova, A. M. Misk, L. Yu. Potakhova, I. D. Romanova, and H. G. Filonov, V All-Union Conference on Gallium Arsenide Study [in Russian], Tomsk (1982), p. 181.Google Scholar
  24. 24.
    P. Skeath, I. Lindau, P. W. Chye, C. Y. Su, and W. E. Spicer, J. Vac. Sci. Technol.,16, 1143 (1979).Google Scholar
  25. 25.
    W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. W. Chye, Phys. Rev. Lett.,44, 420 (1980).Google Scholar
  26. 26.
    V. E. Stepanov, V. A. Chaldyshev, and V. N. Chernyshev, in: Problems in Semiconductor Surface Physical Chemistry [in Russian], Nauka, Novosibirsk (1978), p. 5.Google Scholar
  27. 27.
    I. D. Romanova, N. K. Maksimova, E. N. Pekarskii, and M. P. Yakubenya, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 151 (1976).Google Scholar
  28. 28.
    A. P. Vyatkin, N. K. Maksimova, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 3 (1981).Google Scholar
  29. 29.
    P. Skeath, W. A. Saperstein, P. Pianetta, I. Lindau, W. E. Spicer, and P. Mark, J. Vac. Sci. Technol.,15, 1219 (1978).Google Scholar
  30. 30.
    W. E. Spicer, I. Lindau, P. E. Gregory, C. M. Carner, P. Pianetta, and P. W. Chye, J. Vac. Sci. Technol.,13, 780 (1976); I. Lindau, P. Pianetta, W. E. Spicer, and C. M. Carner, Proc. Seventh Int. Vacuum Congress and the Third Int. Conf. on Solid Surfaces, Vienna, Austria, Sept. 12–16 (1977), p. 615.Google Scholar
  31. 31.
    M. S. Daw, D. L. Smith, C. A. Swarts, and T. C. McGill, J. Vac. Sci. Technol.,19, 508 (1981).Google Scholar
  32. 32.
    J. D. Dow, R. E. Allen, O. F. Sankey, J. P. Buisson, and H. P. Hjalmarson, J. Vac. Sci. Technol.,19, 502 (1981).Google Scholar
  33. 33.
    J. Beyer, P. Krueger, A. Mazur, and J. Pollman, J. Vac. Sci. Technol.,21, 358 (1982).Google Scholar
  34. 34.
    M. S. Daw and D. L. Smith, Phys. Rev. B,20, 5150 (1979).Google Scholar
  35. 35.
    R. E. Allen and J. D. Dow, J. Vac. Sci. Technol.,19, 383 (1981).Google Scholar
  36. 36.
    N. K. Maksimova, I. D. Romanova, E. N. Pekarskii, L. Yu. Potakhova, N. M. Kozhinova, N. G. Filonov, and M. P. Yakubenya, in: Methods of Improving Reliability and Stability of Microelements and Microcircuits. Seminar Materials [in Russian], Ryazan' (1982), p. 102.Google Scholar
  37. 37.
    S. P. Kowalzyk, J. R. Waldrop, and R. W. Grant, J. Vac. Sci. Technol.,19, 611 (1981).Google Scholar
  38. 38.
    V. G. Bozhkov, G. F. Kovtunenko, G. M. Surotkina, and L. S. Selina, Elektron. Tekh., Ser. 2, Poluprovodn. Prib., No. 4 (122), 14 (1978).Google Scholar
  39. 39.
    V. G. Bozhkov and O. Yu. Malakhovskii, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 94 (1983).Google Scholar
  40. 40.
    A. P. Vyatkin, N. K. Maksimova, I. D. Romanova, E. N. Pekarskii, and O. A. Tarasova, in: Gallium Arsenide [in Russian], 5th edn., Tomsk (1974), p. 241.Google Scholar
  41. 41.
    A. P. Vyatkin, N. K. Maksimova, et al., Fiz. Tekh. Poloprovodn.,15, 484 (1981).Google Scholar
  42. 42.
    A. P. Vyatkin, N. K. Maksimova, and N. G. Filonov, Fiz. Tekh. Poluprovodn.,16, 546 (1982).Google Scholar
  43. 43.
    O. D. Borkovskaya, N. L. Dmitruk, R. V. Konakova, and Yu. A. Tkhorik, Elektron. Tekh., Ser. 2, Poluprovodn. Prib., No. 5 (140), 3 (1980).Google Scholar
  44. 44.
    J. M. Borrego, R. J. Gutmann, and S. Ashok, IEEE Trans. Nucl. Sci.,NS-23, 6 (1976).Google Scholar
  45. 45.
    V. G. Bozhkov and O. Yu. Malakhovskii, All-Union Conference on Gallium Arsenide Study [in Russian], Tomsk (1982), p. 176; V. G. Bozhkov and O. Yu. Malakhoskii, Physics of A3B5 Compounds. Summaries of Reports, All-Union Conference [in Russian], Novosibirsk (1981), p. 38.Google Scholar
  46. 46.
    N. K. Makaimova, I. D. Romanova, and N. G. Filonov, All-Union Conference on Gallium Arsenide Study [in Russian], Tomsk (1982), p. 191.Google Scholar
  47. 47.
    S. Ashok, R. J. Gutmann, and J. M. Borrego, J. Appl. Phys.,51, 1076 (1981).Google Scholar
  48. 48.
    A. P. Vyatkin, N. K. Maksimova, and N. G. Filonov, Fiz. Tekh. Poluprovodn.,17, 6 (1983).Google Scholar
  49. 49.
    D. J. Dumin and I. L. Pearson, J. Appl. Phys.,36, No. 11, 3418 (1965).Google Scholar
  50. 50.
    T. N. Morgan, Phys. Rev.,148, 890 (1966).Google Scholar
  51. 51.
    E. G. Dierschke and I. L. Pearson, J. Appl. Phys.,41, 329 (1970).Google Scholar
  52. 52.
    A. A. Vilisov, V. I. Gaman, et al., Fiz. Tekh. Poluprovodn.,15, No. 2, 414 (1981).Google Scholar
  53. 53.
    G. Surrabayrouse, J. Buxo, and D. Esteve, J. Appl. Phys., 12, 1443 (1977).Google Scholar
  54. 54.
    A. N. Korol', V. I. Strikha, and D. I. Sheka, Fiz. Tekh. Poluprovodn.,14, 1180 (1980).Google Scholar
  55. 55.
    E. Calleia and J. Piqueras, J. Appl. Phys.,51, 3980 (1980).Google Scholar
  56. 56.
    A. P. Vyatkin, N. K. Maksimova, and N. G. Filonov, V All-Union Conference on Gallium Arsenide Study [in Russian], Tomsk (1982), p. 179.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • A. P. Vyatkin
    • 1
  • N. K. Maksimova
    • 1
  1. 1.V. D. Kuznetsov Siberian Physico-Technical InstituteTomsk State UniversityUSSR

Personalised recommendations